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Abstract

Navigation in cluttered, unstructured scenes is crucial
for deploying aerial robots in humanitarian applications.
To enhance efficiency and extend operational times, we pro-
pose a biologically inspired method called passive compu-
tation. By utilizing wave physics, we extract depth cues from
defocus instead of relying on costly explicit depth computa-
tion. We demonstrate this approach by using a large aper-
ture lens to get a shallow depth of field on a monocular
event camera, enabling robust and parsimonious naviga-
tion through depth ordinality. The key idea is to optically
”blur out” regions of disinterest, minimizing computational
demands. In simulation experiments, our method achieved
a success rate of 70% with over 62× computation savings
compared to state-of-the-art techniques. Preliminary re-
sults on a real setup also show promise, highlighting the
potential of defocus in enhancing event-based navigation
for aerial robots.

1. Introduction
Tiny aerial robots, known for their agility, gap naviga-

tion, cost efficiency, and scalability in swarms, remain un-
derutilized in critical applications such as search and res-
cue, reconnaissance, and anti-poaching. This is primarily
due to limitations in onboard sensing and computation and
reliance on external infrastructure, which restricts their de-
ployment in unstructured environments. In contrast, na-
ture’s expert flyers, like insects and small birds, navigate
dense, cluttered spaces such as forests using parsimonious
strategies to extract depth cues, bypassing the need for
resource-intensive 3D reconstructions commonly employed
in robotics.

Inspired by nature, we coin the term passive computa-
tion, which leverages custom optical elements to exploit
wave physics and induce depth-based cues by modifying the
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Figure 1. Illustration of the proposed approach in a real-world
scene with a hand-held camera setup. The yellow frame (right)
captures the tree positioned near the camera’s focus distance, and
the white frame (left) shows the tree positioned farther from the
focus distance. For each frame, the corresponding events and the
calculated sharpness maps are shown on each side’s top and bot-
tom corners. Notice that the difference between the two regions’
sharpness maps (more white/sharp regions in yellow frame) shows
how depth cues can be perceived using the proposed approach.

incoming visual signal without requiring electrical power.
Specifically, we employ an event camera paired with a large
aperture lens to mimic the vision of a single ommatidium
(albeit with higher resolution) with a fixed focus. Our ap-
proach investigates the feasibility of such a minimalistic
method for estimating depth cues to aid aerial navigation.

Optical defocus and Point Spread Functions (PSFs) have
attracted growing interest within the event-camera commu-
nity over the past decade but remain underexplored due to
the coupling of events with ego-motion. Early work by
[1] introduced a Spiking Neural Network (SNN) model for
depth estimation in static scenes, leveraging defocus using
varifocal liquid lenses. Subsequent studies, such as [2], uti-
lized event rates as focus metrics for autofocus mechanisms,
while [3] integrated events across focal planes with deep
learning for sparse depth estimation. More recently, [4]
proposed a theoretical framework for 3D localization and
tracking using custom-aperture event cameras.

Traditionally, event cameras are paired with small-
aperture lenses that produce sharp All-In-Focus (AIF) im-



ages, adhering to the pinhole camera model. While effec-
tive, this configuration generates large volumes of events,
including those from irrelevant regions. In contrast, we
couple a large-aperture lens (f /1.6) with a single monocu-
lar event camera at a fixed focus, intentionally introducing
optical defocus to ”blur out” background regions. Similar
to the portrait blur or bokeh effect in photography, this de-
sign reduces events from defocused areas, decreasing com-
putational load and latency while maintaining performance
comparable to explicit depth estimation methods. Figure 1
illustrates our approach of blurring background regions in a
real-world scene.

For navigation, our method leverages these “optically
out-of-focus” regions as a guiding signal, encouraging
movement towards them. This approach contrasts with con-
ventional depth-based navigation, where a full scene-depth
map is constructed, followed by motion planning to avoid
obstacles. Our method is purposive and parsimonious, tai-
lored specifically for aerial navigation. To the best of our
knowledge, this is the first work to formalize the concept of
passive computation and apply it to model optical defocus
for event cameras in mobile robotic applications.

While event cameras have been extensively used for dy-
namic obstacle avoidance [5, 6], their application to static
scenes remains underexplored. This is largely due to the
dominance of motion-induced events, making it challeng-
ing to discern obstacles from free-space regions. The clos-
est work to ours, [7], employs a learning-based framework
for quadrotor navigation in static environments by predict-
ing dense depth maps from events. However, this method is
computationally intensive for small robots. To overcome
these challenges, we propose a lightweight approach for
navigating dense, cluttered forests using a large-aperture
lens and simple mathematical processing on event data (see
§2). Our method achieves a 70% success rate with a run-
time of 16ms in simulation on an Intel®i7 10th-generation
CPU. Our key contributions are highlighted next:

• Passive Computation for Navigation: We define and
apply passive computation to aerial navigation, using
custom optical elements to induce depth-based cues
without electrical power or intensive processing.

• Efficient Depth Cues via Optical Defocus: By pairing
a large-aperture lens (f /1.6) with an event camera, we
minimize irrelevant events from out-of-focus regions,
significantly reducing computation while maintaining
navigation performance.

• Lightweight Navigation in Dense Environments: Our
method bypasses traditional depth-mapping, achieving
a 70% success rate with 62× computational savings
compared to state-of-the-art methods, offering a
scalable solution for small aerial robots navigating
cluttered environments.

2. Passive Computation For Navigation
We define passive computation as a method that lever-

ages passive components (requiring no electrical power)
with a sensor to induce signal characteristics through wave
physics.

Our approach uses a large-aperture lens with an event
camera to introduce depth-dependent optical blur, modulat-
ing event rates based on scene depth. The lens is focused
at a predefined distance Zf , chosen based on the robot’s
size, dynamic constraints, and safety margin. The large
aperture creates a shallow Depth of Field (DoF), restricting
the in-focus region to a specific depth range, enabling the
robot to prioritize immediate obstacles while disregarding
the background. Foreground objects, within Zf ± 0.5DoF,
are segmented using focus-based depth cues, combining or-
dinal depth (foreground closer than background) with met-
ric depth (foreground within a quantifiable range). This seg-
mentation forms the basis of our parsimonious navigation
strategy, ensuring efficient obstacle avoidance in cluttered
environments. The DoF of a camera focused at Zf is given
by

DoF =
(
2NZ2

f c
)
/f2 (1)

where f is the focal length, N is the aperture number, and c
is the circle of confusion [8, 9]. Further,

c ∝ (|Z − Zf |) /Zf (2)

We will now discuss a mathematical approach to perform
foreground-background segmentation.

2.1. Defocus in Events

Event cameras operate asynchronously, with each pixel
independently generating events when the change in loga-
rithmic intensity exceeds a predefined threshold τ [10].

||log(I(x, t+ δt)))− log(I((x, t))||1 ≥ τ (3)

where I(x, t) is the intensity at pixel coordinate (x =[
x y

]⊤
) at time t, δt is the time since the previous event

at the same location.
Many events ei are generated by the event camera in the

time window [T, T + ∆T ]. All the events generated in a
spatio-temporal window E is given by

E = {ek} = {(x, t, p)k} (4)

Here, k indexes through the events and p is event the
polarity. Further we can obtain a subset EX ,Y,T ⊆ E by
indexing between ranges of valid x ∈ X , y ∈ Y and t ∈ T .

Since, we are concerned about finding the foreground re-
gions that are sharp, we leverage the large body of work on
focal measure of event volumes [2, 3]. Inspired from EV-
DodgeNet [5] and [11], we construct event frames E in a



spatio temporal neighborhood [X ,Y, T ] with the following
difference. We treat both polarities equally (by taking abso-
lute value) resulting in a single 2D event frame E .

Previous works aim to generate All-In-Focus (AIF) event
frames; however, longer integration times led to artificial
motion blur, as highlighted in EVDodgeNet. This issue
was addressed in [5] using the EVDeblurNet network on
the event frame E . Another common approach is mo-
tion compensation on the event volume E , as explored in
[12,13].However, these approaches are computationally in-
tensive and unsuitable for small robots. In our lightweight
approach, we focus solely on the relative sharpness between
the foreground and background, which depends on factors
such as integration time ∆T , camera optics, robot move-
ment [V,Ω]T , and the sensor noise floor η. Here, ∆T and
optics are design parameters constrained by practical con-
siderations, which ultimately place an upper bound on the
robot’s velocity, as mentioned in Remarks 2 and 3.

Events are generated according to log intensity change
described in Eq.3. Here intensity I is never directly ob-
served but is a latent variable that the sensor perceives.

In a scene with consistent lighting, events are generated
only due to camera motion. This means the intensity at any
coordinate in the event frame changes with space and time.
The rate of change of intensity with time is given by

dI

dt
=

∂I

∂x

∂x

∂t
+

∂I

∂y

∂y

∂t
+

∂I

∂t
= ẋ

∂I

∂x
+ ẏ

∂I

∂y
(5)

where ∂I
∂t = 0, since we assume that the scene lighting is

constant. Here, ẋ and ẏ are pixel velocities in corresponding
directions. This equation can also be represented as

dI

dt
= v · ∇xI (6)

where ∇xI = [∂I/∂x, ∂I/∂y]
T represents the spatial im-

age gradient, quantifying the rate of intensity change in the
x and y directions. The term v = (ẋ, ẏ) denotes the pixel
velocity or optical flow, describing the apparent motion of
pixels on the image plane [14]. Events are generated when
|dI/dt| ≥ τ (from Eq.3). Hence, from Eq.6, the event rate
depends on pixel velocity (which is related to the 3D ve-
locity of the sensor/robot [14]) and spatial intensity gradi-
ents. The following four remarks highlight the effects of
design parameters on foreground-background segmentation
for static scene navigation.

Remark 1 Smoothing caused by any Point Spread Func-
tion (PSF) attenuates high-frequency components, leading
to a reduction in contrast and, consequently, a decrease in
the number of events generated from the optically blurred
regions.
Remark 2 The event integration time (∆T ) must decrease
with increasing drone velocity (V ) to preserve a high

Signal-to-Noise Ratio (SNR), ensuring effective segmenta-
tion of sharp foreground objects from the blurred back-
ground. Here, signal refers to the sharp foreground, and
noise is the blurred background.
Remark 3 There exists a lower limit to the event integra-
tion time ∆T , below which the information obtained from
the event camera becomes insufficient and is dominated by
noise.
Remark 4 Ratio of sharpness of foreground to background
regions reduces as Zf increases. Increasing the focal length
f in proportion to Zf can mitigate this problem, enabling
high fidelity foreground-background segmentation.

2.2. Foreground Segmentation Implementation De-
tails

As mentioned in § 2.1, we utilize event frames E con-
structed using an integration time of ∆T = 1ms for seg-
mentation. Inspired from [12], the sharpness/focus mea-
sure F used is given by spatial variance in a window size of
32× 32 in E . F maps event frame E to focal frame F , i.e.,
F : E → F .

2.3. Navigation Policy

Inspired from Ajna [15], we find free space in the im-
age plane by adaptively thresolding F . The high sharpness
areas correspond to foreground pixels and low sharpness ar-
eas (blurry regions) correspond to background. Here, fore-
ground pixels are the obstacles we need to dodge. A simple
control policy in velocity space to move in a direction to
align the robot with the free space center in the image plane
is used. A simple Proportional-Integral-Derivative (PID)
controller is used to track this desired velocity.

3. Experiments
We validate our approach using a set of extensive simu-

lation experiments and preliminary results in the real-world
which are explained next.

3.1. Evaluation Metrics

We benchmark our method against state-of-the-art nav-
igation approaches using varying input modalities, includ-
ing metric depth, optical flow (relative depth), and ordinal
depth with boundary constraints, using the same navigation
policy across all methods for fairness. Robots with richer
information can avoid obstacles more effectively and from
closer distances, while lower-information setups represent
smaller robots with limited sensors and compute. We use
the depth map from Blender as ground truth depth, and
the trajectory obtained using this depth map, as the ground
truth trajectory. Evaluation metrics, adapted from Ajna [15]
and EdgeFlowNet [16], include Success Rate (SR), Aver-
age Path Length Increase (PLI), and Run Time (ms), with
PLI calculated relative to the ground truth trajectory.



3.2. Simulation results

Figure 2. Variation of sharpness maps with aperture number (N ).
Rows Top to Bottom: (1) Rendered images from the Blender envi-
ronment, (2) Generated events from the frames, and (3) Calculated
sharpness maps from the events. Columns Left to Right represent
increasing N , with the highlighted point indicating the focus point.
Notice higher sharpness with going from left to right and how the
foregeound and background trees look similar in the third column.

Figure 3. Comparison of various navigation methods: Ground
truth depth, Depth Pro, MiDaS-v2.1Small, RAFT, Ours.

We evaluated our method in a custom Blender® simu-
lator inspired by [5, 15, 16], featuring a room-like struc-
ture with a bumpy floor and randomized cylindrical ob-
stacles textured as tree trunks for realism (see Fig.2, top
row). Event streams were generated using [17] from ren-
dered frames with a 35mm lens (54.4◦ field of view) and
a 36mm sensor at 640 × 480 px resolution, rendered via
Blender’s EEVEE engine. Camera focus (Zf ) was set to
1.5 metres for our method. Depth of Field (DoF) blur was
applied using Blender’s built-in function, with an aperture
of f/1.6 for our method and f/22 for others simulating pin-
hole cameras. We benchmarked against Depth Pro [18],
MiDaS-v2.1-small [19], and RAFT [20], running simula-
tions on an Intel®i7 CPU (10th gen, 64 GB RAM) and
NVIDIA RTX 3090 Ti GPU, with our method executed on
the CPU and others on the GPU. Table 1 reports perfor-
mance over 10 trials with randomized start and goal coor-

dinates for robust evaluation. Figure 3 illustrates sample
top-down trajectories for all methods from one evaluation
starting point.

Method SR (%) ↑ PLI (%)↓ Run time (ms)
Depth-Pro∗ 90 1.5 1001.12

MiDaS-v2.1S∗ 50 2.5 350.125
RAFT∗ 80 2.8 96.57
Ours† 70 0.6 16.894

Table 1. Quantitative evaluation for simulation experiments.
∗ run on GPU, † run on CPU

Table 1 shows our approach achieves a 70% success rate
with the lowest runtime, even on a CPU, outperforming
GPU-based methods with a speedup of at least 62× over
Depth Pro. This highlights the computational efficiency and
effectiveness of our method.

The performance of our approach is influenced by aper-
ture size, which affects the depth of field and the sharpness
contrast between foreground and background objects. As
shown in Fig.2, the sharpness map varies with the aper-
ture number (N ), with larger apertures providing clearer
segmentation of sharp foreground objects. Hence, we se-
lected an f/1.6 aperture for both simulations and prelimi-
nary hardware experiments.

3.3. Preliminary Real-world results

We tested our approach on a real system using a 35mm
f/1.6 Arducam C-mount lens paired with an Inivation
DVXplorer event camera (640 × 480 px). To address its
limited horizontal field of view, we added a Vivitar 0.43×
focal length reducer, achieving an effective field of view
of 12.1◦. The camera was focused at 1.1m during exper-
iments. As shown in Fig.1, the sharpness map effectively
distinguishes foreground from background when the tree is
near the focus distance (yellow frame). These results are
promising, setting the stage for future exploration of navi-
gation strategies on aerial robots.

4. Conclusion
We proposed a passive computation approach for parsi-

monious navigation with event cameras, leveraging defocus
as a depth cue. Pairing a large-aperture lens with a sim-
ple mathematical formulation for sharpness in event space,
we effectively segmented immediate foreground obstacles
from distant ones. This segmentation, combined with a ba-
sic navigation policy, achieved a 70% success rate in static
scene simulations with a runtime of just 16 ms on a CPU.
Preliminary hardware results using an event camera with
a compound lens setup further validate our method. Fu-
ture work will focus on improving robustness in real-world
environments and further reducing runtime for greater effi-
ciency.
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Davide Scaramuzza. Video to events: Recycling video
datasets for event cameras. In IEEE Conf. Comput. Vis. Pat-
tern Recog. (CVPR), June 2020. 4

[18] Aleksei Bochkovskii, Amaël Delaunoy, Hugo Germain,
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