P5: The Final Race

Dushyant Patil
Department of Robotics Engineering
Worcester Polytechnic Institute
Worcester, United States of America
dpatill @wpi.edu

Abstract—This project presents an approach to navigate
through a race track consisting of a window of known size and
shape, followed by a window of unknown shape and size followed
by a dynamic window in the end. We use perception and naviga-
tion stacks developed in previous 2 projects (Segmentation- PnP
for known shape and optical flow for unknown shape window)
for first 2 stages. For dynamic window we use segmentation to
detect fixed frame and dynamic part of the frame and decide a set
of navigation commands to pass through this dynamic windows.
We use DJI Tello’s camera with Jetson Nano Orin for real time
inference of windows in field of view and estimate its relative
center in Tello frame. We use threading to fly, record and infer
to execute parallel perception and navigation.

I. PROBLEM STATEMENT

The aim of this project is to fly through a race track using
on-board sensing and Jetson Orin compute. The racetrack
consists of different types of obstacles as shown in [T} We use
a combination of classical and deep learning based computer
vision for perception and use DJI Tello API for navigation.

D *f‘! AN

Fig. 1: Simulated and Real Race Track

II. STAGE1 : PASSING THROUGH KNWON SHAPED
WINDOW

We follow the Project 3 perception and navigation stack
to pass throug hfirst 2 stages which consists of 2 windows
of known shape ad size. We use UNet model for semantic
segmentation to detect the windows and estimate their depth.
Deep learning is effective for segmentation due to its ability to
automatically learn intricate patterns and features from data.
Convolutional Neural Networks (CNNs) excel at capturing
spatial dependencies in images, making them ideal for tasks
like object or image segmentation, where precise localization
and intricate detail extraction are crucial.

For our project we decided to use Unet which is a deep
learning architecture commonly used for image segmentation
tasks, particularly in medical image analysis and computer

Keshubh Sharma
Department of Robotics Engineering
Worcester Polytechnic Institute
Worcester, United States of America
kssharma@wpi.edu

vision.The network consists of an encoder and a decoder.
The encoder captures features from the input image through
convolutional layers, reducing spatial dimensions. The
decoder then upscales and refines these features to generate
pixel-wise segmentation masks. Notably, UNet employs
skip connections, which connect corresponding layers in the
encoder and decoder. This helps in preserving fine details
during the upsampling process, enhancing segmentation
accuracy.

 SL122s6

e 40

Losemmom "[& convixs Relt
1= in24__s502__ 8 copy
el r_ % b cony 1% 1

Fig. 2: Unet Architecture

For our implementation, as shown in Fig. 2] we take
the input image as 512x512 with 3 channels (Red, Green,
Blue) and pass it through a double convolution layer that
keeps the same dimension but increases the channels to 64.
We then perform max pooling to reduce the size to half.
This combination of double convolution and max pooling
is repeated 4 more times which leads to encoded tensor of
size 32x32 with 1024 channels. After this we de-convolute
this tensor which increases the size to 64x64 and reduces the
channels to 512. We then copy the previous encoded tensor of
matching size and concatenate it to the de-convoluted tensor
and then pass it through a double convolution. We repeat
this de-convolution, concatenation & double convolution 4
more times to regain the original dimension of 512x512
with 64 channels. We then pass this tensor through a fully
connected layer to reduce the number of channels to 1
to get the segmentation mask./ The described model was
trained on the previously described simulated dataset for 900
epochs with a learning rate of 0.0003 to achieve desired



robustness and reliability. This trained model is then used to
perform inference using the Jetson Orin Nano on the images
captured by the DJI Tello Edu Quad-rotor.// Fig. [9] shows
the captured frame from DJI Tello and Fig. [I0] shows the
segmentation mask on the captured image. We can observe
that our implementation gives proper segmentation mask even
if multiple windows are present.

Fig. 3: Captured frame from DIJI Tello

Fig. 4: Inference from trained Unet model

III. CORNER DETECTION

Using the UNet inferred masks, we estimate closest window
and its corners. Using these corners, we estimate the pose of
the window with respect to the Tello camera.

A. Closest window estimation

We used largest area criteria to estimate closest window
among the predicted masks. We used contour detection with
the help of opencv function cv2.findContours. We sorted these
contours in the ascending order of area occupied by contours
in pixels. We use the last contour as our closest window. As
these contours are not perfect rectangles or squares, we apply
further post processing to estimate corners of windows. We

tried two different approaches which gave us certain accuracy
at certain estimation speed. Below image show the inference
and largest area detection using this method:

Fig. 5: RGB Images with applied homography and different
backgrounds

Fig. 6: Inference with closest window estimation

On the closest estimated window, we apply dilation-erosion.
On this image, we approximate a convex hull. On this convex
hull, we find the maximum and minimum x and y coordinates.
Using these coordinates, we fir a rectangle covering enclosing
the predicted mask. On the edges of the rectangle we try to
find the points which are closest to the vertices but lie withing
the white region of our predicted mask. This gives a good
estimation of corners of the window. This method gives us
real time corner detection with good accuracy. Below images
[I5] show the rectangle fitting pipeline to get bounding box of
closest window: .

Fig. 7: Rectangle Fitting Corner Estimation



On this detected window, we apply perspective N-point
(PnP) to determine the pose of the windows with respect to the
camera. Using the PnP distances, we first perform horizontal
and vertical adjustments to the drone. Following this, we
send the drone forward through the window. The submitted
RunVideo.mp4 showcases a successfull attempt using this
algorithm.

IV. STAGE2: OPTICAL FLOW USING DL

Optical flow is a computer vision technique that quantifies
the motion of objects in a sequence of images or frames. It
involves tracking the apparent movement of pixels between
consecutive frames, providing a dense vector field representing
the velocity of each pixel. Optical flow is crucial for tasks like
object tracking, motion analysis, and video understanding. By
calculating the displacement of pixels over time, it enables
machines to perceive and comprehend dynamic visual scenes,
finding applications in robotics, autonomous vehicles, and
video processing.

Deep learning methods enhance optical flow by automatically
learning intricate patterns and representations from data,
improving accuracy and robustness. Traditional methods often
struggle with complex scenarios, while deep learning models,
such as convolutional neural networks, excel at capturing
nuanced motion patterns. They adapt well to diverse scenes,
making them more effective in real-world applications, such
as object tracking and autonomous navigation, where the
ability to handle varying motion complexities is crucial.

For this project we decided to use LiteFlowNet which is a
compact and efficient optical flow estimation model designed
for real-time applications, particularly on resource-constrained
devices. Optical flow refers to the apparent motion of objects
between consecutive frames in a sequence of images or video
frames. It is a crucial computer vision task with applications
in video analysis, object tracking, and motion understanding.
LiteFlowNet is derived from FlowNet, a deep learning
architecture for optical flow estimation, but it is optimized
for lightweight and real-time performance. The “Lite” in
LiteFlowNet signifies its focus on reducing computational
complexity while maintaining competitive accuracy.

The architecture of LiteFlowNet consists of multiple
lightweight convolutional layers that capture spatial
dependencies in the input frames. It employs a correlation
layer to efficiently compute feature correspondences between
frames, enabling it to estimate pixel-level motion information.
The use of densely connected layers helps capture intricate
motion patterns in the input data.

One notable feature of LiteFlowNet is its pyramid processing,
where the model considers multiple scales of information.
This multi-scale approach is beneficial for handling different
motion scales present in diverse scenes.

LiteFlowNet’s design prioritizes computational efficiency,
making it suitable for deployment on devices with limited
computational resources, such as mobile phones or embedded
systems. The model strikes a balance between accuracy and
speed, making it well-suited for real-time applications like

robotics, augmented reality, and video processing on edge
devices.

In summary, LiteFlowNet is a lightweight optical flow
estimation model designed for real-time applications, offering
a balance between accuracy and computational efficiency. Its
architecture incorporates features like dense connections and
pyramid processing to capture complex motion patterns across
multiple scales in input frames. This makes LiteFlowNet
particularly useful for resource-constrained devices where
real-time optical flow estimation is essential.

FlowNetCorr

Fig. 8: FlowNet Architecture

In our application, we executed a sweeping motion using
the DJI Tello drone while capturing images. This sweeping
motion is employed to comprehensively map the entire frontal
area of the drone, ensuring that we capture the widest possible
perspective. The sequence of images captured during this
motion is processed using the pre-trained LiteFlowNet. The
temporal sequence of images is processed in pairs, starting
from the beginning of the recording, to derive optical flow
information between each pair.

To facilitate optical flow inference, the image pairs are
resized to 1024x436, aligning with the dimensions the
model was initially trained on. The model then subjects the
stacked images to a series of convolution layers, enabling
multiplicative patch comparisons between the two feature
maps. The resulting feature maps are concatenated at
the output, facilitating the computation of optical flow.
Subsequently, the output undergoes a series of upconvolution
operations to restore the feature maps to the original image
size, completing the optical flow estimation process.

Fig. 0] shows the captured frames from DJI Tello and Fig.
shows the segmentation mask on the captured image. We
can observe that our implementation gives great optical flow
description.

e ST

Fig. 9: Input images to Liteflownet



Fig. 10: Inference from pre-trained LiteFlowNet model

V. GAP CENTER PREDICTION

Using the the LiteFlowNet inferred masks, we estimate
largest window. Using this window’s contours, we estimate
the center of the window with respect to the Tello camera. We
also assume that the gap is big enough and not oriented much
so that the drone does not need to perform yaw movements.
We use binary inverted threshold to segment the foreground
and background. We tried with a few values of threshold and
came to an observation that the threshold of 100 gives good
results when the drone moves at 20 cm/s. If we change the
speed of the drone for visual servoing, we will need to tune the
threshold again. The image [IT] shows the thresholding output
on the flow visualization image

Fig. 11: Thresholding for Binary Inverted mask

We then try to estimate the largest window in the foreground
to decide which window to pass through.

A. Closest window estimation

We used largest area criteria to estimate closest window
among the predicted masks. We used contour detection with
the help of opencv function cv2.findContours. We sorted these
contours in the ascending order of area occupied by contours
in pixels. We use the last contour as our closest window.

B. Rectangle Fitting

On the estimated largest window, we apply dilation-erosion.
On this image, we approximate a convex hull to distringuish
between an objects / open space on the side of the foreground
from the hole in the foreground (gap). On this convex hull,

we find the maximum and minimum x and y coordinates.
Using these coordinates, we fit a rectangle covering enclosing
the predicted mask. This gives a good estimation of center
of the window and its bounding box. This method gives us
center detection with good accuracy. Below images [I3] show
the rectangle fitting pipeline to get bounding box of closest
window:

Fig. 13: Optical Flow

Fig. 14: Center Estimation and bounding box



VI. VISUAL SERVOING AND NAVIGATION

We use a delayed visual servoing as the liteflownet takes
some time (around 0.5 seconds per pair of images). Using
the world map details as explained in the World Map section
above, we initially move the drone in X and Y directions
(approximately) parallel to the foreground. We parallely record
images at a regular time interval and estimate their approxi-
mate pose in 3D for each image. Once we complete the initial
movement, we then run the inference on the images recorded
and estimate the center of largest gap as explained in above
sections. From the center pixel coordinates, we estimate if the
gap center and drone center have aligned. For all the images
where drone center and gap center had aligned, we find the
mean of 3D poses associated with all the images. Then we give
the drone a command to go to that pose using position control.
After this we send the drone forward. The image below shows
one image where drone center and gap center are aligned.

Fig. 15: Center Estimation and bounding box

VII. STAGE3: FLYING THROUGH DYNAMIC WINDOW

The third stage consisted of a dynamic window similar to a
clock with the blue frame and pink hand as shown in figI[T6]
As the window shown below has very distinct color schemes,
we decided to apply color segmentation to detect fixed frame
and rotating part of this dynamic window.

As the colors of the fixed frame and rotating hand have
a very distinct color which was also different from the
background color, we decided to use color segmentation
for detecting the pose of the window. We used a simple
thresholding in HSV colorspace. We were able to get good
masks for the fixed and dynamic frame as shown in image

IvilIE]

To find the angle the hand makes with the frame, we
estimate the rotating hand center by using the frame center
and use a bounding box to find endpoints of the rotating hand.
To tune the HSV threshold values, we used a trackbar using
opencv GUI for trackbar as shown in imagdI9)]

The navigation through the third window consists of 2
stages:

1) Approach Phase - In the approach phase we reach
a certain distance i.e. 160 cm from the window ’s
approximate center position. We try to determine the
angle made by the frame with global Coordinate system

using PnP on the frame mask. Using the angle, we try

2)

Fig. 17: Input images to Frame Mask

to find the next waypoint at 160 cm from the window
and navigate the drone there. Once the drone reaches
that point, we rotate it at a given angle determined
previously.

Fly-Through Phase - Following this position we con-
stantly track the angle of the hand with the horizontal.
We also find the distance the window is at (which should
be close to 160 cm) using PnP on the frame mask.
Once the hand reaches in between the angle bounds of
110° — 135°, we give a move forward command using
the distance found using PnP. We found out that if we

Fig. 18: Input images to Rotating Hand Mask



hon\opencv\mod

Fig. 19: Color Threshold Tuning using Trackbar

give a high speed so that the drone could cross this
distance within 6 seconds we can cross the window
withing one motion command. The results can be seen
in the submitted video run file.

VIII. PROBLEMS FACED

o The comparatively slow inference time of LiteFlowNet

[1]
[2]
[3]

[4]

made real time inference on image pairs unikely. We had
to execute a recording routine and the infer them.

The slow inference time also presented the challenge of
Tello auto landing after 20 seconds. To overcome this we
created a standby co-routine in which the drone moves
up and down until the inference is complete.

Another problem we faced was our drone wasn’t properly
working with motion commands. It would either ran-
domly skip the commands altogether or execute an inac-
curate action. After changing the drone for a new one and
using the Jetson’s PCle network card limited this problem
to an extent. We suspect that simultaneously recording
frames and giving motion commands on parallel threads
puts strain on the UDP connection and it confuses the
commands. Further analysis is necessary for confirming
this and how to mitigate this issue.

REFERENCES

A Quaternion-based Unscented Kalman Filter for Orientation Tracking
Class Notes by Prof. Nitin Sanket

T.-W. Hui, X. Tang, and C. Loy, “LiteFlowNet: A Lightweight Convo-
lutional Neural Network for Optical Flow Estimation.”

S. Sniklaus, “Sniklaus/Pytorch-liteflownet: A reimplementation of Lite-
FlowNet in pytorch that matches the official Caffe version,”



	Problem Statement
	Stage1 : Passing through Knwon Shaped Window
	Corner Detection
	Closest window estimation

	Stage2: Optical Flow using DL
	Gap center prediction
	Closest window estimation
	Rectangle Fitting

	Visual Servoing and Navigation
	Stage3: Flying through dynamic window
	Problems Faced
	References

