
Team Apache Stealth:
The Final Race !!

Ankit Mittal
Department of Robotics Engineering

Worcester Polytechnic Institute
Email: amittal@wpi.edu

Rutwik Kulkarni
Department of Robotics Engineering

Worcester Polytechnic Institute
Email: rkulkarni1@wpi.edu

Abstract—This project addresses the challenge of
enabling a small drone to autonomously navigate
through an different kinds of windows in a diverse
environment. Given the computational and weight
limitations inherent to small drone platforms, the
project focuses on developing innovative, resource-
efficient algorithms suitable for the NVIDIA Jetson
Orin Nano. The key components include a versatile
perception stack for detecting and tracking window
gaps, and a dynamic planning and control stack
capable of generating safe navigation paths. The
project emphasizes the use of simulated environments
for preliminary testing, employing a variety of window
shapes and textures to ensure robustness. The final
evaluation involves a live demonstration where the
drones navigate through unpredictably placed win-
dows, with an emphasis on accuracy and speed of
navigation. The project’s success will be measured by
the drone’s ability to safely and swiftly identify and
traverse the largest available gap without reliance on
cloud computing resources, showcasing the potential
of compact, intelligent autonomous systems in com-
plex real-world scenarios.

I. INTRODUCTION

There total 3 stages with different kinds of win-
dows to pass through. we don’t have the prior
information of position and orientation. we are
porivided a DJI tello with a front facing RGB color
camera, a down facing grayscale camera, an IMU
along with the altimeter on-board. Only utilizing
these sensor we need to pass through the window.

A. Stage 1

In the first stage, we are presented with two
checker-patterned racing windows. These windows
are nearly square, featuring a checkerboard design

along their edges. Each checkerboard pattern con-
sists of a 7x6 grid. The distance from the checker-
board pattern to any edge of the window is equal
to the size of one square in the checkerboard, high-
lighted in yellow in the referenced figure. Our task
is to use neural networks to detect these checker-
patterned windows, determine their orientation and
pose, and then navigate through them successfully.

Fig. 1: Environment Image in Blender

B. Stage 2

The environment features a window of irregular
shape, constructed from foamcore with various tex-
tures applied. The surrounding wall is also textured,
and the background may have textures that are ei-
ther identical or different from those on the window.
While the colors of the window and the background
might be similar, their patterns will not be exactly



the same. The window, essentially flat, may contain
several holes or gaps. In such cases, the objective
is to identify and navigate through the largest gap.
This largest opening, if there are multiple, will be
sufficiently sized to ensure the safe passage of the
quadrotor drone.

Fig. 2: Hole the wall

C. Stage 3
In this stage, our mission involved navigating

through a dynamic window characterized by a cyan
square frame, within which a pink clock-like hand
was rotating at a fixed, yet unknown, speed. Our
primary goal was to pass through this moving win-
dow swiftly and safely, avoiding any collisions. We
had prior knowledge of the window’s dimensions.

Fig. 3: Hole the wall

Link To Videos: Click Here

II. HARDWARE SPECIFICATIONS

The DJI Tello Edu drone, equipped with a 5-
megapixel camera (2592x1936 photo resolution,
960x720 video streaming), weighs 82.6 grams and
has a 13-minute flight capability with a 1.1 Ah/3.8
V battery. It operates within a 100-meter range and
up to 10-meter altitude, using the DJITelloPy Edu
Python library for programming. Complementing
it is the NVIDIA Jetson Orin Nano, a compact
AI and edge computing module, essential for pro-
cessing the drone’s real-time image processing and
autonomous navigation tasks, ensuring efficient and
precise visual data handling in complex environ-
ments.

III. STAGE 1: CHECKERS WINDOW

At this point, our objective is to identify the
checker window within the environment and ascer-
tain its orientation, allowing us to navigate through
it successfully.

1) Data Generation (sim2real): For the training
of deep learning models, a substantial and diverse
dataset is essential. Generating such datasets from
real-world scenarios is typically resource-intensive.
To mitigate this, we utilize Blender for synthetic
dataset creation, offering a cost-effective and scal-
able solution.
The dataset consists of 6000 images, with each
image dimension being (480x360). Data augmen-
tation techniques were applied to ensure the dataset
captures a wide range of environmental conditions.
Mask images corresponding to each window scene
were also produced in Blender. These masks are
critical for the segmentation algorithm’s training,
providing a benchmark for accuracy. This approach
of generating window images alongside their masks
equips the perception system to generalize effec-
tively in various settings.

https://www.youtube.com/watch?v=2iiV_JZ6oVQ


Fig. 4: Simulated Environment in Blender

Fig. 5: Corresponding Label Image of the of the
Simulated Environment

2) DNN for Segmentation : U-NET: The U-Net
architecture is structured as an encoder-decoder
network with a characteristic ”U” shape, which is
where it gets its name. It consists of a contracting
path (encoder) to capture context and a symmetric
expanding path (decoder) that enables precise
localization.

Model Architecture :
The U-Net architecture processes images in the
format [batch size, channels, height, width].
The architecture encodes an input image ([2,
3, 360, 480]) through four successive down-
convolution blocks, reducing spatial dimensions
while increasing feature channels from 64 to 512.
Max pooling is applied between encoder blocks to
downsample the image. The encoder’s last block
outputs a feature map of [2, 512, 23, 30], which
is then passed through a latent layer ([2, 1024,

23, 30]) that serves as a bottleneck capturing the
image’s most abstract representation.

Fig. 6: U-NET Architecture

The decoder reverses the process with up-
convolutions, halving the channels and doubling
the dimensions at each stage, utilizing skip
connections from the corresponding encoder
outputs to preserve detail. The final decoder output
is [2, 64, 368, 480], which is slightly larger than the
original due to (0,0,4,4) padding applied to match
the input’s spatial dimensions post-processing. The
network concludes with an output layer that uses
a 1x1 convolution to generate a single-channel
segmentation map of the same resolution as the
padded input ([2, 1, 368, 480]).

Training, Loss Function, and Optimization.
The U-Net model is trained using the dataset
of simulation images from Blender, divided into
training, validation, and test sets, with distribution
being 94 percent, 3 percent, and 3 percent
respectively out of a total dataset size of 6000
images. The network is implemented in PyTorch
and is set up to train on a GPU if available. It
employs the above-described U-net architecture.
Training is driven by the BCEWithLogitsLoss
function, suitable for binary classification, and
uses the Adam optimizer with a learning rate
of 0.0001 and weight decay regularization set at
0.00001. Model parameters are iteratively updated
through backpropagation during training epochs,
with performance assessed on the validation set
after each epoch and final model generalization
tested on the test set post-training.



3) Evaluation (Results from DNN): In evalu-
ating our deep neural network, the Dice score is
employed as the primary metric due to its suitabil-
ity for segmentation tasks, measuring the overlap
between predicted segmentation and ground truth
annotations. It ranges from 0, indicating no overlap,
to 1, denoting perfect agreement. For our test set,
we utilize genuine drone-captured images to ensure
realistic assessment conditions. The network has
achieved an impressive Dice score of 0.915 for a
single image, indicating high accuracy in segmen-
tation. Moreover, when considering all images in
the test set, the network maintains a high level of
performance, with an average Dice score of 0.8,
reaffirming its reliability in processing real-world
data.

Fig. 7: Image going into the Network

Fig. 8: Image coming out of the Network

4) Corner Detection: This section delves into a
detailed examination of an advanced image process-
ing method developed for the precise detection of
corners within digital images, with a particular fo-
cus on identifying the corners of windows. Initially,
the process entails a pre-processing phase, where
the image is enhanced to optimize quality, thereby
facilitating more accurate analysis in subsequent
steps. The core of the detection technique employs
the findContours algorithm from the OpenCV li-
brary, which is adept at detecting all significant
patches within the image. The algorithm proceeds to
compute the centroid of each detected patch, which
serves as a provisional location of the window
corners.

Given the prevalence of noise in the binary
mask image, the method incorporates a crucial non-
maximum suppression step. This step is pivotal
as it selectively filters out less prominent features,
effectively discarding false positives that lack the
strong intensity variations typically associated with
genuine corner points. By doing so, the technique
ensures that only the most salient corners—those
with a pronounced intensity gradient and geomet-
rical alignment with the window structure—are
retained for further analysis.

To identify the nearest window from an image,
our image processing system employs the findCon-
tours function of OpenCV on a pre-processed binary
mask to detect contours, which signify potential
windows. By calculating the area of these contours
and identifying the largest one through the contour
area function, we assume the largest contour to
represent the closest window due to the perspective
correlation between size and distance. This contour
is then segmented, focusing our analysis on the
most proximate window for detailed feature anal-
ysis or further computer vision tasks. While the
initial method for identifying the nearest window
relies on the contour area, a more sophisticated
approach could utilize re-projection error, given
that the approximate real-world coordinates of the
windows are known. However, this method proved
challenging due to the drone’s imprecise odometry
and slight physical deviations in the camera’s angle,
which led to inconsistencies in the results that did



not align with the expected outcomes.
when only three corners are visible, we used the

geometric properties of parallelograms estimating
the position of the fourth corner of a window. The
concept is based on the fact that in a parallelogram,
the sum of the vectors of adjacent sides equals the
vector of the opposite side.

5) Pose Estimation: Using the known dimen-
sions of the window, we established world coordi-
nates at the window’s center and extracted the cor-
responding image points from the captured image
via a neural network. These image points represent
the corners of the window in the image. We then
applied a perspective-n-points (PnP) algorithm to
estimate the window’s pose by aligning the world
points with the image points, effectively determin-
ing the window’s position and orientation relative to
the camera. This method, while sophisticated, faced
challenges due to inaccuracies in the drone’s odom-
etry and slight camera tilts, leading to re-projection
errors. We refined the process by enhancing camera
calibration and error correction to improve the pose
estimation

IV. STAGE 2: UNKNOWN GAP WINDOW

The environment has an arbitrary shaped win-
dow(s) which can be ‘seen’ from the origin location.
The window is made of foamcore with texture stuck
on it. we do not know the texture prior but we
will ensure that the windows are not textureless or
they dont fully blend into the background texture.
Also, the colors on the window and the background
can be similar but patterns will not be exactly the
same. The board can be assumed to be nearly planar
and can have multiple holes/gaps, in which case
we have to choose the largest one to fly through.
The largest gap (if multiple gaps are present) will
be large enough for the quadrotor to fly through it
safely.

1) Sensors and Data Acquisition: The data
acquisition for this project relies on the monocular
camera equipped on the DJI Tello Edu drone, as
detailed in the Hardware Specifications section. The
primary challenge in data acquisition was position-
ing the drone so that the camera’s field of view
encompasses the potential gaps in the wall. This po-

sitioning is critical for ensuring that the subsequent
image processing and gap detection algorithms have
the necessary visual data to identify viable paths for
navigation.

Fig. 9: Positioning the Drone such that the Gap is
in FOV of Drone’s Camera

2) Image Processing: The cornerstone of our
image processing approach is the inference of op-
tical flow using the SPyNet network. Optical flow,
a concept in computer vision and image processing,
describes the pattern of apparent motion of objects,
surfaces, and edges in a visual scene, caused by
the relative movement between an observer and the
scene. SPyNet’s processing time ranges from 0.2
to 0.5 seconds per inference, striking a balance
between speed and accuracy. In the realm of com-
putational considerations, SPyNet was selected over
other candidates like FlowNet 2.0 and PWC-Net for
its optimal balance between rapid inference time
and adequate accuracy. Classical methods of optical
flow determination, though expedient, lacked the
robustness and precision provided by contemporary
deep learning-based approaches. We also investi-
gated other deep-learning models for optical flow,
such as FlowNet 2.0 and PWC-Net. However, these
models are computationally demanding, with over
100 million parameters, making them resource-
intensive. Hence, We chose SpyNet for our needs,
and to boost its precision, we conducted several
optical flow evaluations. Through this process, we
pinpointed and chose the region most likely to



contain a gap by analyzing the gap probability
map associated with each optical flow map. This
compensates for the potential shakiness or distortion
in the drone’s captured images. This methodology
ensures that the final optical flow output is both
reliable and representative of the actual scene dy-
namics, facilitating accurate gap identification. The
conceptual foundation for this approach is derived
from Dr. Nitin Sanket’s GapFlyt paper, which ad-
dresses a similar challenge in drone navigation.

Fig. 10: [Top left] - Image1, [Top Right] - Image2,
[Bottom] - Optical Flow of Image1 and Image2

To generate the probability map for each optical
flow, we applied the Otsu thresholding method.
This technique effectively highlights the regions
most likely to represent gaps. Following this, we
overlaid the images, employing binary operations
on each pixel to accurately identify the gaps. This
approach proved to be highly effective, consistently
yielding reliable results even when dealing with
suboptimal/bad optical flow maps.

Fig. 11: [Top left] - Optical Flow 1, [Top Right] -
Optical Flow 2, [Bottom] - Binary Mask Image
obtained after Thresholding with Position Mark-
ers

Figure 5 illustrates that the left optical flow map
lacked accuracy, primarily due to image shakiness
and distortion from the drone’s camera. Similarly,
the right side image also hinted at a potential gap
near the bottom. However, when these maps were
superimposed, the resulting composite enabled us to
obtain a precise binary mask. This mask effectively
highlighted the areas with the highest probability
of being gaps, as demonstrated in the figure. In the
binary image, the green dot represents the center of
the image, which has been adjusted upwards by 150
pixels for 960 X 720 images (determined based on
an experimental basis) to account for the camera’s
tilt. Meanwhile, the red dot indicates the center of
the contour.

A. Softwares and Frameworks
The project employed Python and PyTorch for

programming and deep learning tasks, respectively,
with OpenCV for image processing. DJITelloPy
was used for drone control, ensuring a cohesive



and efficient system for real-time autonomous drone
navigation.

B. Path Planning and Control

1) Initial Positioning and Movement: Consider-
ing the wall’s specified distance of 1.8 to 3 meters
from the origin, with a possible tilt angle of -20
to +20 degrees, the drone’s initial strategy involves
a predetermined forward movement. This initial
maneuver is designed to compensate for potential
takeoff errors or hardware inconsistencies, ensuring
that the drone starts from a consistent and reliable
position relative to the wall.

2) Gap Detection and Alignment: Utilizing the
Perception Stack, the drone computes the optical
flow from its camera feed and post-processes this
data to identify the center of the largest gap in the
wall. As detailed in the Perception Stack section,
the processed output is a binary image with a red
dot marking the estimated gap center and a green
dot at the image center, surrounded by a threshold-
indicating green circle. This setup is integral to the
subsequent visual servoing algorithm.

Fig. 12: Visual Servoing in Action. [Top] - Drone
not aligned with Gap Center. [Bottom] - Drone
Aligned with Gap Center

3) Visual Servoing Implementation: Visual ser-
voing is a critical component of the drone’s navi-
gation strategy. It operates by ensuring that the red
dot (gap center in the image) is aligned within the

green circle (the threshold around the image center).
When the alignment is achieved, indicating that the
drone is positioned correctly relative to the gap, a
forward command is issued to the drone.
The visual servoing mechanism is executed using
the position control feature in the DJITelloPy li-
brary. The process involves calculating the distance
between the red and green dots on the x and y
axes of the image plane. As the perception stack
does not provide depth information, an experimental
approach was taken to estimate a workable depth
between the drone and the wall, considering the
known distance range. This estimation was used
to compute a scaling factor, transforming the pixel
distances into metric units. The drone then moves
according to these calculated distances, repeating
the process until the desired alignment is achieved.

4) Depth Estimation and Scaling Factor: The
depth estimation process is crucial for the success
of the visual servoing strategy. Without direct depth
information from the perception stack, the team
conducted multiple trials to identify a practical
distance between the drone and the wall. This
experimental distance was then used to derive a
scaling factor, crucial for converting the distances
on the image plane to real-world metrics. This
scaling factor plays a pivotal role in ensuring that
the drone’s movements are precise and aligned
with the real-world dimensions of the environment.

In summary, the planning and control strategy
of the drone involves an initial forward movement
for position normalization, followed by gap
detection and alignment using a sophisticated
visual servoing approach. This approach leverages
experimental depth estimation and scaling to
translate image plane measurements into real-world
navigational commands, ensuring precise and
effective movement toward the target gap.

C. Important Frames from the Live Feed of Demo



Fig. 13: Snippets from the Test Run

V. STAGE 3: DYNAMIC WINDOW

In this stage, our mission involved navigating
through a dynamic window characterized by a cyan
square frame, within which a pink clock-like hand
was rotating at a fixed, yet unknown, speed. Our
primary goal was to pass through this moving win-
dow swiftly and safely, avoiding any collisions. We
had prior knowledge of the window’s dimensions.

To isolate specific colors in an image, we used an
HSV (Hue, Saturation, Value) color segmentation
approach. We segmented a cyan window by apply-
ing HSV thresholds for blue (Hue: 70-148, Satu-
ration: 65-255, Value: 51-255) and a pink hand by
using thresholds for pink (Hue: 120-179, Saturation:
90-255, Value: 0-255). To continuously track the
hand’s position, we overlaid a clock-like reference
on the image. This graphical overlay provided real-
time information on the hand’s angle relative to a
central line passing through the window, aiding in
our navigation in this dynamic setting.

Fig. 14: Orientation of hand (angle calculated anti-
clockwise)

1) Pose Estimation: To determine the pose of the
window we utilized the known dimensions of the
window, we established world coordinates at the
window’s center and extracted the corresponding
image points from the captured image via a neural
network. These image points represent the corners
of the window in the image. We then applied a
perspective-n-points (PnP) algorithm to estimate the



window’s pose by aligning the world points with the
image points, effectively determining the window’s
position and orientation relative to the camera. This
method, while sophisticated, faced challenges due
to inaccuracies in the drone’s odometry and slight
camera tilts, leading to re-projection errors. We
refined the process by enhancing camera calibration
and error correction to improve the pose estimation.

2) Planning: To accurately time the drone’s pas-
sage through the dynamic window, we considered
the approximate distance of the drone from the
window. We issued a command for the drone to pass
through when the angle of the hand was between
135 to 225 degrees from the left. This specific
angle range was determined to be the safest zone,
allowing the drone to traverse without colliding with
the moving hand in the window.

VI. CONCLUSIONS

This project successfully demonstrated the capa-
bility of a small drone, specifically the DJI Tello
Edu, to autonomously navigate through different
types of windows in a controlled environment.
Employing the NVIDIA Jetson Orin Nano, we
developed a robust perception stack that utilizes
Neural nets, optical flow, classical computer vision
appraches for gap detection and a visual servoing
approach for precise navigation. Our approach ef-
fectively overcomes the challenges posed by limited
computational resources and the constraints of using
a monocular camera system. The live demonstra-
tions and tests confirmed the viability of our system
in accurately identifying and traversing through the
largest gaps in various window shapes, highlighting
the potential of compact drones in complex naviga-
tion tasks.

VII. ACKNOWLEDGMENT

The author would like to thank Prof. Nitin Sanket
and the TA of this course RBE595.

REFERENCES

[1] RBE595-Hands-On Autonomous Robotics Course Web-
siteLink

[2] DJITelloPy Link
[3] Optical Flow Estimation using a Spatial Pyramid Network

Link

[4] N. J. Sanket, C. D. Singh, K. Ganguly, C. Fermüller and
Y. Aloimonos, ”GapFlyt: Active Vision Based Minimalist
Structure-Less Gap Detection For Quadrotor Flight,” in
IEEE Robotics and Automation Letters, vol. 3, no. 4, pp.
2799-2806, Oct. 2018, doi: 10.1109/LRA.2018.2843445.
Link

https://pear.wpi.edu/index.html
https://github.com/damiafuentes/DJITelloPy
https://arxiv.org/abs/1611.00850
https://ieeexplore.ieee.org/document/8371216

	Introduction
	Stage 1
	Stage 2
	Stage 3

	Hardware Specifications
	STAGE 1: CHECKERS WINDOW
	Data Generation (sim2real)
	DNN for Segmentation : U-NET
	Evaluation (Results from DNN)
	Corner Detection
	Pose Estimation


	Stage 2: Unknown Gap Window
	Sensors and Data Acquisition
	Image Processing

	Softwares and Frameworks
	Path Planning and Control
	Initial Positioning and Movement
	Gap Detection and Alignment
	Visual Servoing Implementation
	Depth Estimation and Scaling Factor

	Important Frames from the Live Feed of Demo

	Stage 3: Dynamic Window
	Pose Estimation
	Planning


	Conclusions
	Acknowledgment
	References

