
P5: The Final Race
Mayank Bansal

Robotics Engineering
Worcester Polytechnic Institute

Email: mbansal1@wpi.edu

Siyuan ’Oliver’ Huang
Robotics Engineering

Worcester Polytechnic Institute
Email: shuang4@wpi.edu

Miheer Diwan
Robotics Engineering

Worcester Polytechnic Institute
Email: msdiwan@wpi.edu

Abstract—This project, segmented into three distinct phases,
explores the development of an autonomous drone navigation
system. In the first phase, we focus on navigating through
multiple windows, drawing inspiration from the Alpha Pilot
competition. We employ YOLOv8 for gate detection, trained
exclusively on simulated data, coupled with Perspective-n-Point
(PnP) for determining the gate’s pose relative to the drone.
This phase culminates in the successful integration of controls,
planning, and hardware with the DJI TelloEDU drone. The
second phase addresses the challenge of flying through an
unknown, arbitrarily shaped gap. Here, we utilize the SPyNet
optical flow detection algorithm, achieving nearly 100 percent
accuracy in gate navigation. The final phase tackles navigating
through a dynamic window with a central, rotating dial. A simple
yet effective method of color thresholding and line fitting is
employed to calculate the dial’s angle, guiding the drone’s timing
to fly through the window. Finally we present our results and
learnings throughout the duration of this course.

I. PHASE 1

A. Environment

The map consists of multiple gates placed at 3D poses
known apriori from the environment file. The window loca-
tions are given in the format:

boundary xmin ymin zmin xmax ymax zmax
window x y z xdelta ydelta zdelta
qw qx qy qz xangdelta yangdelta zangdelta
boundary 0 0 0 45 35 6
window 1 1 1 0.2 0.2 0.2 0.52 0.85 0 0 5 5 5

• x, y, z represents the approximate center of the window
in meters.

• xdelta, ydelta, zdelta represents the variation in meters
that is possible from x, y, z values.

• qw, qx, qy, qz represents the approximate orientation of
the window as a quaternion.

• xangdelta, yangdelta, zangdelta represents the ZYX
Euler angle variation in degrees that is possible from the
approximate orientation given.

B. Perception Stack

The first phase of this project dealt with the development of
a robust Perception stack for detecting or segmenting windows
in an unknown environment. For this, we decided to train a
custom Instance segmentation model using YOLOv8.
Since the windows in the environment have different poses in
the world, a simple object detection network would not have

Fig. 1. Multiple gates used for dataset generation

been able to provide us with accurate results. Additionally,
the bounding boxes generated by such a network do not take
into account the orientation of the windows or sometimes
have overlaps when multiple windows are present in the same
frame. Using instance segmentation, we were accurately able
to detect the windows and generate segmentation masks for
each window.

1) Dataset Generation Using Blender: Having a good
and unbiased dataset is key for obtaining great results with
a deep neural network. To make this task more complicated,
we only had access to simulated data. We created our dataset
using only rendered images from Blender. Blender is a free
and open-source 3D computer graphics software toolset. The
images consisted of multiple windows spawned in random
orientations. We also changed the camera pose and lighting
conditions in each image to add more randomness to our
dataset. Our original dataset consisted of 5000 images created
using Blender. Since our dataset only consisted of simulation
data, there may have been some intrinsic bias. To address

Fig. 2. Gate

this problem, we used two approaches:

1) 3D Gaussian Splatting: The first approach to solving
the problem of intrinsic biases in popular literature is
to use hyper-realistic simulated data. To this extent, we
made use of Gaussian Splatting to recreate a 3D color
point cloud of the actual environment and imported
it into Blender. We spawned our window frames on
this background and We used this GitHub repository to
perform this task: ’Gaussian-Splatting-Windows’. While
this approach worked very well for our test case, it could
not be generalized across other backgrounds. So, we
decided to proceed with the second approach as it made
our network more robust.

2) Domain Randomization: Domain randomization is a
technique for transferring Deep Neural Networks from
Simulation to the Real World and helps us bridge the gap
between simulation and reality. We took images from the
FlyingChairs dataset and used them as backgrounds for
our rendered images. Thus, we expanded our original
dataset of 5000 images to 10000 images by adding new
backgrounds to them.

2) Transformations and Augmentations: We used transfor-
mations and augmentations to expand our dataset from 10000
images to 24000 images:

1) Auto-orientation
2) Grayscale
3) Brightness: Between -30
4) Blur: Up to 2.5px
5) Noise: Up to 10

Fig. 3. GAUSSIAN SPLAT OF ENVIRONMENT

6) Cutout: 15 boxes with 5
3) Instance Segmentation Using YOLOv8: We used the

Roboflow API and Ultralytics YOLOv8 to train our custom
model for window segmentation. YOLOv8 is a state-of-the-
art object detection and image segmentation model created by
Ultralytics in January 2023 and using the PyTorch framework.
We trained our instance segmentation model using the pre-
trained weights from the YOLOv8n-seg. YOLOv8n-seg is the
lightest YOLOv8 model, has the fastest inference time, and
was trained on the COCO dataset. The model was trained for
100 epochs

Dataset Division:
• Train Set: 21000 images
• Test Set: 1000 images
• Validation Set: 2000 images
We trained multiple models with different outputs and this

helped us gauge what works best for our task. We started by
training the model with just the four corners of the window as
an input. While this model was good, the segmentation masks
were not reliable in some cases where there was overlap or
orientation changes.

The next model we trained only had the 4 corners of the
window with the checkerboard pattern as the ground truth.
This model was extremely accurate and robust. However,
predicting which four corners belonged to the same window
proved to be difficult. So, we changed our model again.

Our final model combined the previous two approaches and
predicted the segmentation masks of two classes — the entire

https://github.com/jonstephens85/gaussian-splatting-Windows.git

Fig. 4. Dataset with background image

Fig. 5. Augmented training image

window and the four corners. This helped us develop a robust
model which was able to predict the window masks accurately.
Extracting the window and corner masks with some post-
processing was a lot easier this way too. the next section talks
about the post-processing techniques we used.

Fig. 6. Segmentation result of the network

Fig. 7. Corners obtained after post-processing

4) Post-Processing Techniques: In our post-processing sec-
tion, we are fitting a circle to each segment in order to
determine which corners belong to which gate. After getting
circles on each segment, we allot each corner to gate based
on ratio of the distance of the center of the corner centre to
the gate centre and the radius of the gate circle. If this ratio
is between 0.6-0.8, this corner is assigned to that gate. This
process is repeated for all the corners and gates.

5) Camera Calibration: Camera Calibration was done with
the help of MATLAB and a checkerboard pattern to correct
the distortions in the images captured by the DJI Tello EDU
drone and predict the camera intrinsics.

6) PnP: Pnp (Perspective-n-Point) is the algorithm used to
estimate the pose of the closest window with respect to the
camera frame. We use the cv2.solvePnP() function in which
the inputs are image co-ordinates of the corners of the closest
window from top-left corner in anti-clockwise manner, the 3D
world frame co-ordinates of the corresponding window corners
in the same order, the intrinsic camera matrix of the camera on
the Tello obtained from calibration process and the distortion
co-efficients(assumed to be zero in our case). The output is
the pose of the world frame with respect to the camera frame.
This pose estimation can now be used to fly the drone past
the window.

II. PHASE 2

A. Environment

The environment has an arbitrarily shaped window(s) that
can be ‘seen’ from the origin location. The window is made of
foam core with texture stuck on it. The texture is not known
prior to the flight but the windows are not textureless. Also, the
colors on the window and the background could be similar but
the patterns were not exactly the same. The board was nearly
planar and had multiple holes/gaps. In this case, the goal was
to fly through the largest gap. Furthermore, there were offsets
of about +20 and -20 degrees in the yaw angle and a similar
offset in the X-axis.

Fig. 8. Environment image

B. Gap Detection

1) Optical Flow: Optical flow is a technique used to
understand image motion. It is usually applied to a series of
images that have a small time step between them, for example,
video frames. There are two types of optical flow - Sparse and
Dense. Sparse optical flow follows the movement of only a few
pixels while dense optical flow follows the movement of all
the pixels in the image. To find the location of the gap, dense
optical flow is more useful than sparse optical flow. The idea
is that the pixels belonging to the background texture moves
slower compared to the foreground texture pixels when drone
is moved. This disparity in pixel flow (optical flow) will enable
us to find the gap.

Initially, we tried using classical methods like Farneback
algorithm to find the optical flow vector, but this method is
pretty slow and the resultant vector field is not of a high
resolution which makes it difficult to segment out the gap
effectively. We then shifted to deep learning methods which
are usually more accurate than classical methods.

We used the PyTorch implementation of Anurag Ranjan’s
SPyNet (Spatial Pyramid Network for Optical Flow). It is

a light-weight network with fast inference speeds (We were
getting each inference in around 0.5 seconds).

Link to Github Repository: pytorch-spynet

Fig. 9. Colorized Optical Flow

2) Methodology: The drone takes off and then moves a
bit forward so that the full board is in view. We take two
images in 0.5 seconds succession and then we then calculate
the optical flow using SPyNet from these two images. Figure
9 shows the colored optical flow from the two images. The
color(hue) is based on the angle of the optical flow vectors
and the saturation is based on the magnitude of these vectors.
Figure 10 shows the normalized magnitude of these vectors.
Now we need to detect the largest contour and segment that out
to find the largest gap. Initially we used Canny edge detection
and thresholding on the normalized optical flow image to
find the largest contour but this method was not very robust.
We ended up using otsu + binary thresholding which decides
the threshold value dynamically for the magnitude image and
segments the darker parts based on this threshold value. Then,
the contours are detected on this thresholded image and the
largest contour is found along with its centroid. Figure 11
illustrates this step.

The next step is visual servoing. The primary logic here was
very simple. If the centroid of the largest contour was away

Fig. 10. Normalized Optical Flow Magnitude

https://github.com/sniklaus/pytorch-spynet

Fig. 11. Largest Contour with its Centre

from the image center, we commanded the drone to fly in that
direction. For example, if the centroid is to the right of the
image center, we command the drone to move right for a very
small distance. This was repeated till the centroid was within
a set range of the image center and helped us align the drone
with the window. After centering, we fly through the window.

III. PHASE 3

A. Environment

The third phase of our project presented the challenge of
piloting a drone through a dynamic window, which featured
a centrally rotating pink dial, akin to a clock hand. This
dial, characterized by its constant rotation speed, served as
a moving barrier that the drone had to adeptly navigate. A
visual representation of this window and its rotating element
is provided in Figure 12.

B. Angle Estimation of the Pink Dial

We address the challenge of estimating the angle of the
rotating pink dial within a dynamic window, which is critical
for drone navigation. Utilizing the OpenCV library, we imple-
mented a color thresholding technique to isolate the pink dial.
This process involves extracting the dial’s contour and fitting
a line to this shape. Intersection points between the line and
the contour are determined, which are integral to computing
the rotation vector.

This vector extends from the rotation center, established by
solving the line equations at every tenth frame, to one of the
intersection points. The angle of the dial is then deduced from
this vector using the arctan function. The resultant angle is
positive when the dial is in the upper half and negative when
in the lower half. This angular information is pivotal for the
subsequent navigation of the drone.

C. Drone Navigation Through the Dynamic Window

Following the angle estimation, the strategy to navigate
the drone through the window is implemented. The drone is
programmed to initiate flight through the lower half of the

Fig. 12. Dynamic window

window as soon as the dial transitions from a negative to a
positive angle. This implies that the dial has moved to the
upper half, opening a passage for the drone. Fig. 13 shows the
condition when drone is commanded to go through and Fig. 14
shows the condition when the drone cannot go through. Fig.
15 shows the flowchart of the full process the drone undergoes
from phase 1 to phase 3.

Fig. 13. Dynamic window - Go

We employ a synchronization mechanism between the angle
detection and the drone’s flight control system. By continu-

Fig. 14. Dynamic window - Do not go

ously monitoring the angle of the dial, the drone’s onboard
system can precisely time its flight to ensure a safe passage
through the dynamic window. This method leverages the real-
time processing capabilities of our system to achieve seamless
and autonomous navigation.

IV. RESULTS

The video recording of the run can be seen from the
following link:

Video Submission Link

V. CONCLUSION

This project, segmented into three distinct phases, explores
the development of an autonomous drone navigation system. In
the first phase, we focus on navigating through multiple win-
dows, drawing inspiration from the Alpha Pilot competition.
We employ YOLOv8 for gate detection, trained exclusively
on simulated data, coupled with Perspective-n-Point (PnP) for
determining the gate’s pose relative to the drone. This phase
culminates in the successful integration of controls, planning,
and hardware with the DJI TelloEDU drone.

The second phase addresses the challenge of flying through
an unknown, arbitrarily shaped gap. Here, we utilize the
SPyNet optical flow detection algorithm, achieving nearly 100

The final phase tackles navigating through a dynamic win-
dow with a central, rotating dial. A simple yet effective method
of color thresholding and line fitting is employed to calculate
the dial’s angle, guiding the drone’s timing to fly through the
window.

Each phase of this project not only demonstrates technical
proficiency but also contributes significantly to the field of
autonomous drone navigation.

Start

Drone Takes Off

Fly to approximate gate location

Use PnP to calculate pose

Pass through the gate

All gates passed?

Take Two Images and Calculate Optical Flow

Find Largest Contour

Find center of largest contour

Move to align with the Gap

Aligned with the Gap?

Navigate to dynamic window

Find angle of the pink dial

Is dial in upper half?

Fly through the window

Stop

yes

yes

yes

no

no

no

Fig. 15. Flowchart of the drone navigation process through gates and dynamic
windows.

https://wpi0-my.sharepoint.com/:f:/g/personal/msdiwan_wpi_edu/Etfy6iJ2vaZKmn4sfuPtny4BwDAxsNQg-dNQyypve8f3FQ?e=92A9qn

	Phase 1
	Environment
	Perception Stack
	Dataset Generation Using Blender
	Transformations and Augmentations
	Instance Segmentation Using YOLOv8
	Post-Processing Techniques
	Camera Calibration
	PnP

	Phase 2
	Environment
	Gap Detection
	Optical Flow
	Methodology

	Phase 3
	Environment
	Angle Estimation of the Pink Dial
	Drone Navigation Through the Dynamic Window

	Results
	Conclusion

