
The Mega Race
1st Venkateshkrishna
Masters in Robotics

Worcester Polytechnic Institute
Worcester, MA 01609
vparsuram@wpi.edu

2nd Athithya, Lalith
Masters in Robotics

Worcester Polytechnic Institute
Worcester, MA 01609

lnavaneethakrishnan@wpi.edu

3rd Gampa, Varun
Masters in Robotics

Worcester Polytechnic Institute
Worcester, MA 01609

vgampa@wpi.edu

Abstract—This project encompasses on navigating the drone
through three stages which focuses on estimating the free space
in a window, to detect free space on arbitrary hole and a dynamic
window which has a movable hand attached to servo motor and
flying the drone through them. The approximate locations are
given which can be leveraged to use a start point to estimate
the position of the windows more accurately. Then the drone
estimates the location it needs to go to and then navigates to the
desired location without crashing into the window. The flight ends
after it passes through all the windows. we describe the pipeline
developed to detect the free space and align the quadrotor,
allowing it to pass through the obstacle without crashing in.
We have used, Spynet for generating the optical flow. Spynet
takes in two images, generally the position of camera for both
the images, is very slightly different. In these images, it can be
seen, in the images, the objects which are far away move very
less, whereas objects which are closer, would shift much more.
The deep learning model developed, is trained on such pairs of
images and generates the optical flow. Hence objects which are
closer can be segmented, as the optical flow would show that
the wall. And the wall which is behind would have a different
optical flow model. Hence, we can find the portion in the image,
where the optical flow on the wall is different. The contour of the
hole in the wall is then extracted using threshold and contouring
techniques. Then the center of the hole is found as the center of
contour. Next, based on the position of the center of the contour,
velocity control is used to move the drone. A simple PI controller
is used for this purpose. After the center of the contour, is in the
center of the image (within an error bound), then drone is made
to fly straight to pass through the wall.

I. INTRODUCTION

In this project, we describe the pipeline developed and used
to detect the position of the windows with respect to the
drone camera. First we train a neural network to detect the
corners of the window. After training is done, we calibrate
the monocular camera of the drone to get its K matrix and
distortion parameters. Finally, all of this is brought together,
wherein the image is taken by the drone, and then the image
is first rectified using the distortion parameters, the pixel
coordinates of the corner points are estimated by the neural
network, and finally, using the PnP function, which uses these
image pixel coordinates, the K matrix and actual positions of
the corner points with respect to window center, the position
of the window center with respect to the camera is calculated.
Now after this pipeline is it is integrated into the navigation
pipeline. As per the approximate map of the environment we
know the rough locations of the windows. We direct the drone

to go to a location in front of the approximate location so
that the drone view the window. Then it detects the position
of window and directs it to pass through it’s center and move
some fixed distance away from the window through it’s center.
This is repeated for the three windows. In the subsequent
section, the detection and navigation pipeline is described.

II. USING EFFICIENT NET-B0 FOR LEARNING

Considering that we needed to evaluate a deep CNN on the
Nvidia Jetson Orin Nano during runtime, we chose to select
a relatively light network with a lesser number of parameters,
but still complex enough to understand the data in various
adverse conditions. For this reason, we chose to work with
the efficient net-B0 model. Efficient net B0 has just about
4.5 million parameters compared to 11 million parameters of
Resnet 18 but performs much better. Currently, it is considered
the state-of-the-art CNN model, for classification, and it is
used in the backbone of many architectures.

Hence we used the efficient net for generating 8 outputs
which correspond to x and y coordinates of the 4 corner points.
We used rmse loss function and starting with the pre-trained
weights trained the entire network.

III. CAMERA CALIBRATION

We used the checkerboard pattern printed on an A4 size
paper. We used a checkerboard pattern, with a 30 mm square
size to generate the K matrix and the distortion parameters.
This was done using the vision toolbox in Matlab. The
checkerboard pattern used for calibration is shown in figure
6. The K matrix obtained is:940.5992 0 470.5372

0 956.1483 359.2646
001.0000


During runtime of the drone, it appears that camera’s output

is a bit dim, but our detection algorithm appears to work well
nontheless and hence is not refined.

IV. POSE GENERATION

To generate the pose of the window. Opencv’s cv2.pnp
is used. PnP or perspective n-point is a method to estimate
the pose of a calibrated camera given a set of n 3D points
in the world and their corresponding 2D projections in the



Fig. 1. Checker board pattern used for camera calibration

Fig. 2. Image in runtime

image. The camera pose consists of 6 degrees of freedom
(DOF) which are made up of the rotation (roll, pitch, and yaw)
and 3D translation of the camera with respect to the world.
For this to work efficiently 4 points are needed. In Opencv’s
implementation, we get the position of the world with respect
to the camera frame.

V. NAVIGATION LOGIC

We first parse through the text file which gives the ap-
proximate locations of the windows. Then we move the
drone to go 150 cm in front of the approximate location.
It then captures the image, which has window in it. Using
the method described, it calculates the position of the center
of the window. Next the command is given to go 100 cm
further along the line joining the position of the drone and the
estimated center of the window. This process is repeated till
all the windows are covered.

VI. USING SPYNET FOR OPTICAL FLOW GENERATION

Spynet is a lightweight network for generating optical flow.
It works significantly well if the poses of the camera between
two images is very less. This is done, as we need to evaluate
the deep CNN on the Nvidia Jetson Orin Nano during runtime.

The network evaluation time for this network is about 0.35
seconds.

VII. CONTOUR GENERATION

After optical flow is generated, then it is converted to an
rgb image, where each pixel would show, how much that
corresponding pixel moved. As the majority of the image is
the wall and the wall behind front wall, the pixel intensity
of the wall behind, which can be observed through the wall
would be different. We then converted the image to a gray
scale image, and using adaptive thresholding the hole in the
wall is segmented. Then using opencv’s contour function, we
find the contour of the hole and it’s center.

VIII. VISUAL SERVOING

Once, the center of the contour is found in the image.
Depending on it’s position, the velocity control is applied to
the drone, to move the drone such that the center of the contour
lies in the center of the image. A PI controller is used for
velocity control. This cycle is repeated till the center of the
contour lies in the center of the image. The time for each cycle
is about 0.4 seconds.

IX. DYNAMIC WINDOW

The dynamic window has a moving hand, we do color
thresholding through with hsv and we create two bounding
boxes. One bounding box is used to detect frame and the
other for the moving hand.When the moving hand and the
immovable hand are aligned in the same line, we give the
commands for the drone to move forward.

X. RESULTS

We see that the drone is able to navigate through the free
space in the windows. Based on the estimated positions we
recreated the map in blender and it agrees to a reasonable
extent the real world. We have shown the images and their
pose inference from the drone for all three images. We see that
the drone is able to navigate through the free space in the wall.
Optical flow generated in blender is shown. Using the ground
truth, intersection over union (iou) is calculated. It is seen that
the iou is above 80%. In the last phase, we flew through the
last window successfully through color thresholding.



Fig. 3. window1 detection in runtime

Fig. 4. window2 detection in runtime

Fig. 5. Picture from the live demo

Fig. 6. The detected gap

Fig. 7. Thresholded image of blender simulation

Fig. 8. Dynamic window with bounding box



XI. VIDEOS

A video of the footage of the drone navigating the obstacle
course is shared in the folder under the name runVideo.mp4

XII. CONCLUSION

In this project, we built the pipeline for navigating through
free space of known windows. This is done using the video
from DJI Tello’s onboard camera which has a resolution of
720x960. The detection and navigation is done in real time.

REFERENCES

[1] Open CV’s PnP: link
[2] Efficientnet: link
[3] Spynet: link

https://docs.opencv.org/4.x/d5/d1f/calib3d_solvePnP.html
https://arxiv.org/pdf/1905.11946.pdf
https://spynet.is.tue.mpg.de/

	Introduction
	Using Efficient net-B0 for learning
	Camera Calibration
	Pose Generation
	Navigation logic
	Using Spynet for optical flow generation
	Contour generation
	Visual servoing
	Dynamic Window
	Results
	Videos
	Conclusion
	References

