The Final Drone Race

Ankush Singh Bhardwaj
abhardwaj@wpi.edu

Abstract—This project focuses on guiding a DJI Tello Edu
quadrotor through a complex obstacle course, incorporating
algorithms from previous projects (1 through 4), navigating the
drone through different windows. Equipped with sensors like
RGB and grayscale cameras, IMU, and altimeter, the quadrotor
gathers essential data using the DJITelloPy package. The obstacle
course involves three stages, including navigating racing windows,
an unknown-shaped window, and a dynamic window with a
rotating clock-like hand. The primary goal is for the drone to
successfully navigate all windows in each stage, showcasing the
adaptability of the DJI Tello Edu in dynamic and unpredictable
environments.

I. ENVIRONMENT

The test track is organized into three distinct stages, each
presenting unique challenges for the DJI Tello Edu quadrotor.
In the first stage, the quadrotor takes off from the heli-
pad/origin and maneuvers through a set of two drone racing
windows with checkerboard patterns on the corners, similar to
those in project 3. Moving to the second stage, an unknown-
shaped window is introduced, similar to project 4. Here,
the quadrotor must navigate through this unfamiliar window
as quickly as possible, again avoiding collisions with the
background. The third and the last stage introduces a dynamic
window with a rotating cyan square and a pink clock-like hand
in the middle. The rotation speed of the hand is fixed but
unknown. Navigating through this dynamic window poses a
challenge of timing and precision, with the quadrotor required
to fly through the window swiftly and without collisions.
These varied stages collectively form a comprehensive ob-
stacle course, testing the quadrotor’s capabilities in speed,
adaptability, and precise maneuvering (refer to Fig. 1).

II. IMPLEMENTATION
A. Stage 1 - Racing Windows

In this initial stage, the objective was to navigate the DJI
Tello Edu quadrotor through a challenging course featuring
a rectangular board with distinctive features, of logos and a
unique checkerboard pattern.

1) Semantic Segmentation - Neural Network: We opted for
a PyTorch-based U-Net to perform semantic segmentation,
with a focus on identifying the unique checkerboard pattern
located at the corners of the windows (refer to Fig. 2). Training
the neural network was a meticulous process, starting from
scratch on the WPI Turing clusters. This specialized approach
ensured the network’s adaptability to the intricate task at hand.

Sri Lakshmi Hasitha Bachimanchi
sbachimanchi @wpi.edu

Anuj Pradeep Pai Raikar

apairaikar@wpi.edu

Fig. 1. Test Track

To generate a robust dataset for training, we utilized
Blender, creating a diverse set of scenarios encompassing var-
ious camera angles, lighting conditions, and window configu-
rations. Augmentations involved alpha matting, and the dataset
was further enriched by compositing with real background
images, adding an extra layer of complexity to the training
data. The creation of binary masks for training involved storing
2D pixel coordinates of window corners in JSON files, mapped
from their respective 3D coordinates. These binary masks
served as ground truth data for the network, providing labeled
information crucial for accurate segmentation.

2) Camera Calibration - Ensuring Precision: To ensure
accurate projection of the 3D world onto the 2D image plane,
the DJI Tello Edu’s camera underwent calibration. Leveraging
Matlab’s Calibration toolbox and a printed checkerboard
pattern, we estimated the camera’s intrinsic parameters,
including focal lengths, principal point, and distortion
parameters. This calibration process laid the foundation for
subsequent accurate 3D pose estimation.

3) Corner Detection - Integrating Classical Computer
Vision: Post-segmentation, classical computer vision
approaches were implemented for precise corner detection.
Utilizing cv2.findcontour and bounding box techniques,
we determined the corners of the segmented window. This
integration of neural network segmentation and classical CV
methods enhanced the accuracy of corner detection, a crucial

Fig. 2. Stage 1 Window

step in subsequent 3D pose estimation.

4) 3D Pose Estimation - Integrating Neural and CV Ap-
proaches: The final stage involved estimating the 3D pose
of the window. Applying the cv2.solvepnp function, we uti-
lized the calibrated camera parameters and pixel coordinates
obtained through classical CV approaches. This integration
of neural network segmentation and classical computer vi-
sion methods proved to be an effective strategy, providing
the quadrotor with precise information about the window’s
position in 3D space.

B. Stage 2 - Unknown Window

Stage 2 presents an obstacle course with textured
boards featuring irregularly shaped gaps of different sizes.
The challenge involves accurate background-foreground
segmentation and navigating through these gaps without
collisions (refer to Fig. 3).

1) Perception Stack - Optical Flow: Our approach involves
taking pairs of images while the drone moves along a wall
with gaps. By doing this, we make sure the drone captures
all the irregular gaps in its camera view. After the initial
image, we command the drone to quickly move horizontally
and capture a second image. These images become important
for the next steps. We rely on optical flow, a concept in
computer vision that helps us understand how pixels move
between frames. It tracks pixel-level motion patterns between
consecutive frames. We used SPyNet algorithm to calculate
this flow, enabling the drone to grasp how it moves relative to
its surroundings quickly. SPyNet is a spatial pyramid network
trained on extensive datasets for obtaining dense optical flow

offering detailed insights into the environment’s motion field.
SPyNet is trained to do this and worked well for our drone
images.

Fig. 3. Stage 2 Window

2) Background-Foreground Segmentation: The optical flow
gives us a .flo optical flow analysis file showing how things
move. By finding the minimum optical flow within gap bound-
aries and creating a grayscale map, we can separate the gaps
from the wall. This map is turned into a binary mask, helping
us find the boundaries of the gaps. We use this to find the
biggest gap and figure out its center.

Fig. 4. Stage 3 Window

3) Safe Waypoint Detection and Navigation: ldentifying
the biggest gap is crucial for safe navigation. We use contours
and edge detection to make sure we get it right. Once we
know where the biggest gap is, we align its center with the
image center as a navigation waypoint. This alignment guides
the drone safely through the gap as it moves forward.

C. Stage 3 - Dynamic Window

In the third stage of our obstacle course, the drone
encounters a dynamic window with a rotating clock-like
hand. To address this challenge, we incorporated color
thresholding, a fundamental technique for object detection.
This approach enables the drone to identify specific colors
within an image by defining a color range, proving essential
for detecting objects based on their unique color characteristics
(refer to Fig. 4).

1) Color Thresholding: We employed color thresholding
as our foundational technique using hsv, allowing the drone
to distinguish between the blue outer frame of the window
and the rotating pink hand. By defining color ranges for
both elements, the drone effectively identifies and navigates
through the predefined windows. To precisely outline the
detected objects within the window, we integrated contour
detection into our color thresholding approach. We utilized
the OpenCV library to find contours corresponding to the
blue window and pink hand. This involved processing the
color threshold masks to identify contours for each element
independently.

2) Gap Detection: After detecting window and the
rotating hand, we utilized the Canny edge detector and Hough
Transform to identify lines within the masked image. The
calculated angles of these lines with respect to the horizontal
axis provide crucial information about the orientation of
objects within the window. By overlaying these lines onto
the original image, the drone gains insights into the spatial
configuration of the dynamic window.

The integration of color thresholding with edge and
hough transform empowers the drone to not only detect
objects within the window but also discern the orientation
of obstacles using angle calculation. This capability is
pivotal for successful navigation through the dynamic and
unpredictable environments encountered in our obstacle
course. The resulting images, including the combined
mask, edges, and lines drawn on the original image,
serve as valuable visual aids in understanding the drone’s
decision-making process during navigation (refer to Fig. 5, 6).

III. TESTING

To assess the viability of our implementations across all
stages, thorough testing was conducted on the DJI Tello Edu
drone, enhanced by the Jetson Nano platform. The drone’s
performance was rigorously evaluated in diverse scenarios,
starting with Stage 1—Racing Windows, where precise nav-
igation through designated windows was measured for speed
and accuracy. In Stage 2—Unknown Window, the drone
adeptly maneuvered through irregular gaps, showcasing the
effectiveness of the optical flow-based navigation method. In
Stage 3—Dynamic Window, achieved with color thresholding
and angle calculations. Comprehensive testing encompassed

overall navigation and integration, confirming the success of
combining computer vision, deep learning, and drone control
algorithms. The results underscore the robustness of our imple-
mentations, demonstrating adaptive and responsive navigation
through complex obstacle courses on the DJI Tello Edu
platform with Jetson Nano integration (Refer to subsequent
figures).

Fig. 5. Stage 1

_.‘l

Input image

%

&
o)
Ht
L}

Fig. 6. Stage 1

IV. REFERENCES

1 Principles of Robot Motion: Theory, Algorithms, and
Implementations” by Howie Choset, Kevin M. Lynch, et
al.

2 https://docs.px4.io/main/en/flight_stack/controller_diagrams.html

3 https://github.com/anuragranj/spynet

Fig. 10. Stage 3

Fig. 8. Stage 2

Fig. 11. Stage 3

5 https://dl-cdn.ryzerobotics.com/downloads/Tello/Tello
SDK 2.0 User Guide.pdf
6 https://www.deeplearningbook.org/

4 https://github.com/damiafuentes/DJITelloPy/tree/master/djitell(%)yhttps3//1eal‘n0PenCV-00m/

Fig. 9. Stage 2

	Environment
	Implementation
	Stage 1 - Racing Windows
	Semantic Segmentation - Neural Network
	Camera Calibration - Ensuring Precision
	Corner Detection - Integrating Classical Computer Vision
	3D Pose Estimation - Integrating Neural and CV Approaches

	Stage 2 - Unknown Window
	Perception Stack - Optical Flow
	Background-Foreground Segmentation
	Safe Waypoint Detection and Navigation

	Stage 3 - Dynamic Window
	Color Thresholding
	Gap Detection

	Testing
	References

