
P4: Navigating The Unknown!
Dushyant Patil

Department of Robotics Engineering
Worcester Polytechnic Institute

Worcester, United States of America
dpatil1@wpi.edu

Keshubh Sharma
Department of Robotics Engineering

Worcester Polytechnic Institute
Worcester, United States of America

kssharma@wpi.edu

Abstract—This project presents an approach to build a per-
ception stack for DJI Tello drone for flying through objects of
unknown shape and size. We use optical flow to detect a window
to pass through. We use DJI Tello’s camera with Jetson Nano
Orin for real time inference of window in field of view and
estimate its relative center in Tello frame. We use threading to
fly, record and infer in parallel which causes some issues for
UDP communication which we have mentioned about at the end
of the report.

I. PROBLEM STATEMENT

The aim of this project is to estimate pose of a window of
unknown shape and size. For this we will be using the optical
flow related deep learning models followed by a set of post-
processing algorithm to get an estimate of window pose in
drone frame. The estimated pose will later be used to fly the
drone through the window.

II. WORLD MAP

The data provided to us was the approximate area of the
location of the unknown window. We load this data in blender
as cube objects using primitive_cube_add function of
bpy module. The Washburn laboratory has exactly same setup
which replicated the map file given. We use 4 different textures
and window shapes provided in the starter code file of the
P4 assignment to select the network of choice, develop the
perception and navigation codebase, and test our approach in
simulated environment (blender) before testing the code in the
real world (Washburn laboratory).

III. OPTICAL FLOW USING DL

Optical flow is a computer vision technique that quantifies
the motion of objects in a sequence of images or frames. It
involves tracking the apparent movement of pixels between
consecutive frames, providing a dense vector field representing
the velocity of each pixel. Optical flow is crucial for tasks like
object tracking, motion analysis, and video understanding. By
calculating the displacement of pixels over time, it enables
machines to perceive and comprehend dynamic visual scenes,
finding applications in robotics, autonomous vehicles, and
video processing.
Deep learning methods enhance optical flow by automatically
learning intricate patterns and representations from data,
improving accuracy and robustness. Traditional methods often
struggle with complex scenarios, while deep learning models,
such as convolutional neural networks, excel at capturing

nuanced motion patterns. They adapt well to diverse scenes,
making them more effective in real-world applications, such
as object tracking and autonomous navigation, where the
ability to handle varying motion complexities is crucial.
For this project we decided to use LiteFlowNet which is a
compact and efficient optical flow estimation model designed
for real-time applications, particularly on resource-constrained
devices. Optical flow refers to the apparent motion of objects
between consecutive frames in a sequence of images or video
frames. It is a crucial computer vision task with applications
in video analysis, object tracking, and motion understanding.
LiteFlowNet is derived from FlowNet, a deep learning
architecture for optical flow estimation, but it is optimized
for lightweight and real-time performance. The ”Lite” in
LiteFlowNet signifies its focus on reducing computational
complexity while maintaining competitive accuracy.
The architecture of LiteFlowNet consists of multiple
lightweight convolutional layers that capture spatial
dependencies in the input frames. It employs a correlation
layer to efficiently compute feature correspondences between
frames, enabling it to estimate pixel-level motion information.
The use of densely connected layers helps capture intricate
motion patterns in the input data.
One notable feature of LiteFlowNet is its pyramid processing,
where the model considers multiple scales of information.
This multi-scale approach is beneficial for handling different
motion scales present in diverse scenes.
LiteFlowNet’s design prioritizes computational efficiency,
making it suitable for deployment on devices with limited
computational resources, such as mobile phones or embedded
systems. The model strikes a balance between accuracy and
speed, making it well-suited for real-time applications like
robotics, augmented reality, and video processing on edge
devices.
In summary, LiteFlowNet is a lightweight optical flow
estimation model designed for real-time applications, offering
a balance between accuracy and computational efficiency. Its
architecture incorporates features like dense connections and
pyramid processing to capture complex motion patterns across
multiple scales in input frames. This makes LiteFlowNet
particularly useful for resource-constrained devices where
real-time optical flow estimation is essential.

In our application, we executed a sweeping motion using



Fig. 1: FlowNet Architecture

the DJI Tello drone while capturing images. This sweeping
motion is employed to comprehensively map the entire frontal
area of the drone, ensuring that we capture the widest possible
perspective. The sequence of images captured during this
motion is processed using the pre-trained LiteFlowNet. The
temporal sequence of images is processed in pairs, starting
from the beginning of the recording, to derive optical flow
information between each pair.
To facilitate optical flow inference, the image pairs are
resized to 1024x436, aligning with the dimensions the
model was initially trained on. The model then subjects the
stacked images to a series of convolution layers, enabling
multiplicative patch comparisons between the two feature
maps. The resulting feature maps are concatenated at
the output, facilitating the computation of optical flow.
Subsequently, the output undergoes a series of upconvolution
operations to restore the feature maps to the original image
size, completing the optical flow estimation process.
Fig. 2 shows the captured frames from DJI Tello and Fig.
3 shows the segmentation mask on the captured image. We
can observe that our implementation gives great optical flow
description.

Fig. 2: Input images to Liteflownet

IV. GAP CENTER PREDICTION

Using the the LiteFlowNet inferred masks, we estimate
largest window. Using this window’s contours, we estimate
the center of the window with respect to the Tello camera. We
also assume that the gap is big enough and not oriented much
so that the drone does not need to perform yaw movements.
We use binary inverted threshold to segment the foreground
and background. We tried with a few values of threshold and
came to an observation that the threshold of 100 gives good
results when the drone moves at 20 cm/s. If we change the

Fig. 3: Inference from pre-trained LiteFlowNet model

speed of the drone for visual servoing, we will need to tune the
threshold again. The image 4 shows the thresholding output
on the flow visualization image 3.

Fig. 4: Thresholding for Binary Inverted mask

We then try to estimate the largest window in the foreground
to decide which window to pass through.

A. Closest window estimation

We used largest area criteria to estimate closest window
among the predicted masks. We used contour detection with
the help of opencv function cv2.findContours. We sorted these
contours in the ascending order of area occupied by contours
in pixels. We use the last contour as our closest window.

B. Rectangle Fitting

On the estimated largest window, we apply dilation-erosion.
On this image, we approximate a convex hull to distringuish
between an objects / open space on the side of the foreground
from the hole in the foreground (gap). On this convex hull,
we find the maximum and minimum x and y coordinates.
Using these coordinates, we fit a rectangle covering enclosing
the predicted mask. This gives a good estimation of center
of the window and its bounding box. This method gives us
center detection with good accuracy. Below images 8 show
the rectangle fitting pipeline to get bounding box of closest
window:

V. VISUAL SERVOING AND NAVIGATION

We use a delayed visual servoing as the liteflownet takes
some time (around 0.5 seconds per pair of images). Using
the world map details as explained in the World Map section



Fig. 5: Input images to Liteflownet

Fig. 6: Optical Flow

above, we initially move the drone in X and Y directions
(approximately) parallel to the foreground. We parallely record
images at a regular time interval and estimate their approxi-
mate pose in 3D for each image. Once we complete the initial
movement, we then run the inference on the images recorded
and estimate the center of largest gap as explained in above
sections. From the center pixel coordinates, we estimate if the
gap center and drone center have aligned. For all the images
where drone center and gap center had aligned, we find the

Fig. 7: Center Estimation and bounding box

mean of 3D poses associated with all the images. Then we give
the drone a command to go to that pose using position control.
After this we send the drone forward. The image below shows
one image where drone center and gap center are aligned.

Fig. 8: Center Estimation and bounding box

VI. PROBLEMS FACED

• The comparatively slow inference time of LiteFlowNet
made real time inference on image pairs unikely. We had
to execute a recording routine and the infer them.

• The slow inference time also presented the challenge of
Tello auto landing after 20 seconds. To overcome this we
created a standby co-routine in which the drone moves
up and down until the inference is complete.

• Another problem we faced was our drone wasn’t properly
working with motion commands. It would either ran-
domly skip the commands altogether or execute an inac-
curate action. After changing the drone for a new one and
using the Jetson’s PCIe network card limited this problem
to an extent. We suspect that simultaneously recording
frames and giving motion commands on parallel threads
puts strain on the UDP connection and it confuses the
commands. Further analysis is necessary for confirming
this and how to mitigate this issue.

REFERENCES

[1] A Quaternion-based Unscented Kalman Filter for Orientation Tracking
[2] Class Notes by Prof. Nitin Sanket
[3] T.-W. Hui, X. Tang, and C. Loy, “LiteFlowNet: A Lightweight Convo-

lutional Neural Network for Optical Flow Estimation.”
[4] S. Sniklaus, “Sniklaus/Pytorch-liteflownet: A reimplementation of Lite-

FlowNet in pytorch that matches the official Caffe version,”


	Problem Statement
	World map
	Optical Flow using DL
	Gap center prediction
	Closest window estimation
	Rectangle Fitting

	Visual Servoing and Navigation
	Problems Faced
	References

