Navigating The Unknown!
Team Nimbus Navigators

Two Late days used

Chaitanya Sriram Gaddipati
Department of Robotics Engineering
Worcester Polytechnic Institute
Worcester, Massachusetss 01609
Email: cgaddipati@wpi.edu

Abstract—This study focuses on designing a perception stack
for the DJI Tello EDU quadcopter, enabling it to autonomously
navigate through irregular, unknown-shaped windows. The pri-
mary goal is to identify and fly through the largest gap in a
wall. The process begins by maneuvering the quadcopter to a
position where the full gap is visible, followed by detecting the
optical flow of the window. Subsequently, this flow data is post-
processed to outline the largest gap’s contour and pinpoint its
center. With the center identified we employ visual servoing to
guide the quadcopter to align its image center with the gap’s
center, facilitating a successful flight through the gap.

I. INTRODUCTION

In the rapidly evolving field of autonomous drone technol-
ogy, the capability to navigate through complex environments
remains a crucial challenge. This project introduces an inno-
vative solution, focusing on the development of a specialized
perception stack for the DJI Tello EDU quadcopter. Our aim
is to enable the quadcopter to autonomously identify and
navigate through irregularly shaped, unknown windows—a
task that simulates complex real-world scenarios where drones
might operate in urban environments or disaster zones.

The process is initiated by flying the drone to a position
where the entire gap is visible. To detect the gap, we utilize
the Recurrent All-Pairs Field Transforms (RAFT) network for
optical flow detection. We exploit the drone’s slightly unstable
hovering to gather images for input to our RAFT network
which provides a substantial optical flow for analysis.

The next phase involves processing this flow to delineate the
contour of the gap and accurately locate its center. This is
a critical step in our post-processing routine. Once we have
identified the center of the gap, the challenge is to precisely
position the drone such that its image center aligns with the
gap’s center in the image. Achieving this alignment ensures
that the drone can move forward through the gap without
colliding with the surrounding wall.

To accomplish this precise positioning, we employ visual
servoing techniques. These techniques allow us to navigate
the drone effectively, ensuring that the image center and
the gap center are closely aligned. Once this alignment is
achieved, we are ready to guide the quadcopter through the

Ankit Talele
Department of Robotics Engineering
Worcester Polytechnic Institute
Worcester, Massachusetss 01609
Email: amtalele@wpi.edu

Shiva Surya Lolla
Department of Robotics Engineering
Worcester Polytechnic Institute
Worcester, Massachusetss 01609
Email: slolla@wpi.edu

window, successfully completing our objective of autonomous
navigation through irregularly shaped gaps.

II. IMPLEMENTATION

We realized that motion is important to detect unknown-
shaped windows, especially in scenarios where the background
and foreground have similar textures. Therefore, we explored
methods for identifying the largest gap in the wall given we
have two images taken from different quadcopter positions in
front of the wall such that the gap to be detected is visible in
both the images.

A. Watershed algorithm

In our project’s initial stages, we utilized the watershed
algorithm for gap detection. This method first used Otsu’s
method to distinguish foreground from background. We then
employed the watershed algorithm, which effectively seg-
ments an image into different regions based on topographical
features. Despite its potential, this method was ultimately
discarded due to its ineffectiveness in environments where
foreground and background had similar colors and textures,
as it is based on color thresholding. Different scenarios with
the algorithm are shown in fig [T] and fig 2

B. Edge-Based Gap Detection Using Sobel Operators

In a subsequent phase of our project, we shifted to a method
that was based on the premise that as the quadcopter moves,
the background visible through the gap changes, creating a
distinct intensity change at the gap’s boundary compared to
other areas.

This involved capturing two images at different positions,
aligning them using the SIFT algorithm and optical flow
calculations, and then applying Sobel operators to create
gradient maps. By normalizing these gradient maps and then
subtracting them from each other, we aimed to isolate the gap
by exploiting the differences in edge intensity caused by the
background change. Despite the theoretical promise of this
method in highlighting the gap by detecting edge intensity
variations, it proved impractical. The sensitivity of the Sobel



Fig. 2. Watershed algorithm failure case

operators led to the detection of excessive edges, making
it challenging to isolate the largest gap. Consequently, this
approach was deemed ineffective and abandoned in favor of
more reliable techniques.

C. Optical Flow Estimation using RAFT

The fundamental assumption of optical flow is that the
brightness of any object point in an image remains constant
over time. Mathematically, this is represented by the brightness
constancy constraint equation:

I(z,y,t) = I(z + dx,y + dy, t + dt) (D

where I(x,y,t) is the intensity of the pixel at position (z,y)
at time ¢, and dx, dy are the displacements of the pixel in the
x and y directions between times ¢ and ¢ + dt.
In the context of drone navigation, optical flow aids in
understanding the movement of the drone relative to its
surroundings. By analyzing the optical flow of frames captured
during the drone’s flight, it is possible to infer motion patterns
and make navigational decisions. The procedure involves:
1) Capturing consecutive frames during the drone’s move-
ment.
2) Applying computer vision techniques to these frames
to calculate optical flow, which represents the motion
between them.

Fig. 3. Normalized gradient map at first position using Sobel operator

Fig. 4. Normalized gradient map at second position using Sobel operator

Fig. 5. Difference of the gradient maps

3) Post-processing the optical flow data to extract mean-
ingful information like the movement direction and
magnitude.

In this specific application, the drone captures two frames
while performing a vertical movement (up and down). The
relative motion induced by this movement enhances the quality
of the optical flow output. This output is then processed to
generate contours, which help in identifying and locating gaps



or openings (like windows) in the environment when fitted
with convex hulls. The center of these gaps is calculated using
the optical flow data, assisting the drone in aligning itself
accurately for navigation or other tasks.

In summary, optical flow provides a dynamic and robust
method for real-time analysis of the drone’s environment,
playing a pivotal role in autonomous navigation and obstacle
avoidance.

D. Use of RAFT Pre-trained Optical Flow Network

For the optical flow image generation, we utilized the RAFT
(Recurrent All-Pairs Field Transforms) pre-trained network,
known for its accuracy and efficiency in calculating optical
flow. One of the key factors influencing our choice was
RAFT’s performance when combined with CUDA processing,
allowing it to generate optical flow outputs in under one
second. This rapid processing capability is crucial for real-
time applications, especially in scenarios requiring immediate
response and adaptation, such as drone navigation. By inte-
grating RAFT with CUDA, we ensured that the optical flow
computations are not only accurate but also swift, enabling the
drone to process visual data and make navigational decisions
in real-time. This efficiency negates the need for the drone to
hover or stall while waiting for inference results, thereby en-
hancing operational efficiency and responsiveness. Such real-
time processing capabilities are vital for applications involving
dynamic environments and time-critical tasks, making RAFT
an ideal choice for our drone navigation system.

The RAFT model as mentioned in the paper [1] is trained
on different datasets and we found the weights trained for
Sintel dataset gave the best results for us. First the network is
tested for different gap shapes and foreground and background
textures in blender. These can be seen in figure [6| Further we
tested on a scenario where both foreground and background
textures are exactly same as shown in figure [/| and it worked
here as well giving us the confidence to proceed on to real
world usage. The intersection over union is calculated for each
case and is shown in figure [§] It can be seen that the IOU is
slightly less in the same texture scenario (second image from
left) which is understandable.

The network and post-processing steps discussed in the next
section are implemented on the drone and figure [9] shows
all the flows detected during one of the successful runs (the
video links to which are in conclusion section). Here the drone
initially gets a flow and calculates the distance between the gap
center and the image center and corrects its position. In row 2
we see the same calculations being done and as this is within
tolerance we go through the gap.

III. POST-PROCESSING

In our post-processing, adaptive thresholding was first em-
ployed on the optical flow image obtained. Unlike Otsu’s
method, which is a global thresholding technique, adaptive
thresholding adjusts to varying lighting conditions across
different parts of the image. It transformed the image such
that the key features, especially the edges of the gaps, were

highlighted.
Then we performed edge detection using the Canny algorithm
which is well-regarded for its effectiveness in identifying
strong edge areas in an image. The detected edges were then
dilated to connect discontinuous parts of objects, followed by a
morphological ’closing’ operation to fill in small holes within
the edges. This step was crucial in ensuring a continuous and
clear representation of potential gaps.
After processing the image, we moved to contour detection,
a process of finding continuous lines or curves that bound or
cover the full boundary of objects in the image. We identified
and sorted these contours based on their area, focusing on the
largest contour as the likely representation of the largest gap.
This was a pivotal step as it transitioned our process from
general edge detection to pinpointing a specific target.
For the largest contour, we calculated its centroid using image
moments, a method that provides the average of the contour’s
coordinates, effectively identifying the center of the gap. This
gap center is the key feature that will next be used for visual
servoing of the quadopter for positioning itself effectively to
fly through the gap.
IV. VISUAL SERVOING

Our visual servoing process consists of the following steps:

1) Calculate Distance between Centers:

o Find the center of the gap in the image.

« Calculate the Euclidean distance between this center
and the center of the image.

o This distance helps determine how far the drone is
from being directly aligned with the target in the
2D plane withput depth towards the gap.

2) Check Distance Against Tolerance:

« If this distance is less than a tuned tolerance value,
the drone is close enough to proceed through the
window.

o Otherwise, the drone needs to align its position with
the gap center.

3) Horizontal Adjustment:

o Calculate the horizontal difference by comparing the
coordinates of the image center and the center of the
gap.

« Convert this difference into a horizontal movement
command, scaling it by a conversion factor (that is
tuned after multiple trials).

e This command directs the drone to move left or
right, aligning it horizontally with the gap center.

4) Vertical Adjustment:

o Similarly, calculate the vertical difference using the
coordinates of the image center and the gap center.

« Convert this vertical difference into a vertical move-
ment command, also scaled by the same conversion
factor.

o This command instructs the drone to move up or
down, aligning it vertically with the target.

5) Movement Execution:



o The drone moves horizontally and vertically based
on the calculated commands.

o The magnitude and direction of these commands
dictate the speed and direction of the drone’s move-
ment.

In our experiments we observed that if the height of the
drone initially is level with the gap, then we do not need
the vertical adjustment mentioned above which reduces the
additional tuning. Furthermore if you look at figure [9] (Row 2
Last image) before the drone went through the window, the
circle radius measuring the tolerance is large but the drone
still goes through the window, this is because we found that
compared to the body frame the front camera of the tello drone
is slightly tilted down increasing the tolerance limit.

V. CONCLUSION

In this project we were able to demonstrate that a robust
deep learning neural net for optical flow estimation can be
used to identify a gap of unknown shape and texture in real-
time. A post-processing approach is developed to identify the
gap and its center. A visual servoing approach is explored to
aligh the drone with the gap center to go through it. In the
future a better and more robust gap tracking algorithm can be
explored.

Please use the following links to look at videos of successful
run of the drone in different views: linkl: drone POV, link2:
Camera man view.

Some of the challenges faced across the project were discussed
thoroughly in the report. Additionally since the odometry of
the Tello drone is not perfect some of the runs are unsuccessful
because the drone won’t accurately go to the specified coor-
dinates. This is a hardware limitation to which the solutions
should further be explored to create more reliable trajectories.
Overall the performance of the drone is good and it passes
through the gap reliably.

REFERENCES

[1] Teed, Zachary, and Jia Deng. “Raft: Recurrent all-pairs field transforms
for optical flow.” Computer Vision—-ECCV 2020: 16th European Con-
ference, Glasgow, UK, August 23-28, 2020, Proceedings, Part II 16.
Springer International Publishing, 2020.


https://youtu.be/kCroe-EPg3U
https://youtu.be/wt_jdC7YsPk
https://youtu.be/wt_jdC7YsPk

Fig. 6. Results of RAFT and post processing in different scenarios on blender. (Left to Right: Camera frame, Groundtruth blender masks, Flow detected,
Gap contour identified on flow, Gap contour and Convex hull.)

Fig. 7. Results of RAFT and post processing when both foreground and background textures are same on blender.(Trust me there is a gap there)



Fig. 8. Intersection over Union for blender simulation

Fig. 9. Results from a real world run. Row 1: Flow estimation at the initial location, Row 2: Flow estimation after correction and just before going through
gap. (Left to right: Frame 1, frame 2 used for flow, Optical flow, Gap contour and center identified on flow, Contour and center on frame, Distance between
gap center and image center)



	Introduction
	Implementation
	Watershed algorithm
	Edge-Based Gap Detection Using Sobel Operators
	Optical Flow Estimation using RAFT
	Use of RAFT Pre-trained Optical Flow Network

	Post-processing
	Visual Servoing
	Conclusion
	References

