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Abstract—(Utilizing 2 late days) This project ad-
dresses the challenge of enabling a small drone to
autonomously navigate through an irregularly shaped
window in a diverse environment. Given the com-
putational and weight limitations inherent to small
drone platforms, the project focuses on developing
innovative, resource-efficient algorithms suitable for
the NVIDIA Jetson Orin Nano. The key components
include a versatile perception stack for detecting and
tracking window gaps, and a dynamic planning and
control stack capable of generating safe navigation
paths. The project emphasizes the use of simulated
environments for preliminary testing, employing a va-
riety of window shapes and textures to ensure robust-
ness. The final evaluation involves a live demonstration
where the drones navigate through unpredictably
placed windows, with an emphasis on accuracy and
speed of navigation. The project’s success will be
measured by the drone’s ability to safely and swiftly
identify and traverse the largest available gap without
reliance on cloud computing resources, showcasing the
potential of compact, intelligent autonomous systems
in complex real-world scenarios.

I. INTRODUCTION

A. Background and Context

The previous course module focused on nav-
igating through environments with known struc-
tures, like square windows, using deep learning
techniques (e.g., U-Net) and Perspective-n-Point
(PnP) algorithms. This approach, while effective
for predefined shapes, faces challenges in more
unpredictable and unstructured environments.

B. Problem Statement

Real-world scenarios often require drones to nav-
igate through irregular and unknown-shaped win-

dows, crucial for applications in search and rescue,
exploration, or reconnaissance. The complexity of
these environments demands a more adaptable and
versatile approach than what conventional methods
offer.

C. Objective

This paper builds upon the coursework and re-
search in implementing visual perception methods
using our drone’s monocular camera. The primary
objective is to extend the capabilities of our drones
to navigate through irregularly shaped gaps using
only visual cues. This involves developing and eval-
uating methodologies that enable drones to accu-
rately perceive and interpret complex environments
with a single camera.

D. Contribution

The key contribution of this report lies in its
application to a specific use case of navigating
through irregular gaps. We introduce an approach
that combines inferring optical flow using a deep
learning-based method with post-processing tech-
niques to segment out the largest gap. The rest of
the cavities and open spaces are effectively ignored,
focusing solely on the viable navigation path. This
is complemented by visual servoing techniques to
guide the drone through the identified window,
showcasing an integrated solution for complex nav-
igation tasks.

E. Structure of the Report

The report is organized as follows:



• Hardware Specifications: Outlines the
drone’s hardware, focusing on its onboard
computational unit, the NVIDIA Jetson Orin
Nano, sensors, and camera systems.

• Environment Setup: Describes the testing
environment, detailing the irregular windows’
shapes, sizes, and textures.

• Perception Stack: Discusses the visual per-
ception methods for gap detection and segmen-
tation, emphasizing their integration with the
drone’s monocular camera system for effective
navigation.

• Planning and Control: Covers the strategies
for path planning and control, focusing on al-
gorithms for precise maneuvering and obstacle
avoidance.

• Results: Presents experimental findings, in-
cluding the drone’s gap detection accuracy
and navigation efficiency, with a comparative
analysis of existing methods.

• Conclusion and Future Work: Summarizes
key findings, contributions, and limitations,
while suggesting avenues for future research
in drone navigation and perception enhance-
ments.

Link To Videos: Click Here

II. HARDWARE SPECIFICATIONS

The DJI Tello Edu drone, equipped with a 5-
megapixel camera (2592x1936 photo resolution,
960x720 video streaming), weighs 82.6 grams and
has a 13-minute flight capability with a 1.1 Ah/3.8
V battery. It operates within a 100-meter range and
up to 10-meter altitude, using the DJITelloPy Edu
Python library for programming. Complementing
it is the NVIDIA Jetson Orin Nano, a compact
AI and edge computing module, essential for pro-
cessing the drone’s real-time image processing and
autonomous navigation tasks, ensuring efficient and
precise visual data handling in complex environ-
ments.

III. ENVIRONMENT SETUP

Fig. 1: Environment Image in Blender

Fig. 2: Environment Image in Real Environment

IV. PERCEPTION STACK

A. Sensors and Data Acquisition
The data acquisition for this project relies on the

monocular camera equipped on the DJI Tello Edu
drone, as detailed in the Hardware Specifications
section. The primary challenge in data acquisition
was positioning the drone so that the camera’s
field of view encompasses the potential gaps in the
wall. This positioning is critical for ensuring that

https://youtu.be/n9dtgLKIwOo?si=BVxQciG26sqp-Yxo


the subsequent image processing and gap detection
algorithms have the necessary visual data to identify
viable paths for navigation.

Fig. 3: Positioning the Drone such that the Gap is
in FOV of Drone’s Camera

B. Image Processing

The cornerstone of our image processing ap-
proach is the inference of optical flow using the
SPyNet network. Optical flow, a concept in com-
puter vision and image processing, describes the
pattern of apparent motion of objects, surfaces, and
edges in a visual scene, caused by the relative
movement between an observer and the scene.
SPyNet’s processing time ranges from 0.2 to 0.5
seconds per inference, striking a balance between
speed and accuracy. In the realm of computational
considerations, SPyNet was selected over other
candidates like FlowNet 2.0 and PWC-Net for its
optimal balance between rapid inference time and
adequate accuracy. Classical methods of optical
flow determination, though expedient, lacked the
robustness and precision provided by contemporary
deep learning-based approaches. We also investi-
gated other deep-learning models for optical flow,
such as FlowNet2.0 and PWC-Net. However, these
models are computationally demanding, with over
100 million parameters, making them resource-
intensive. Hence, We chose SpyNet for our needs,
and to boost its precision, we conducted several
optical flow evaluations. Through this process, we

pinpointed and chose the region most likely to
contain a gap by analyzing the gap probability
map associated with each optical flow map. This
compensates for the potential shakiness or distortion
in the drone’s captured images. This methodology
ensures that the final optical flow output is both
reliable and representative of the actual scene dy-
namics, facilitating accurate gap identification. The
conceptual foundation for this approach is derived
from Dr. Nitin Sanket’s GapFlyt paper, which ad-
dresses a similar challenge in drone navigation.

Fig. 4: [Top left] - Image1, [Top Right] - Image2,
[Bottom] - Optical Flow of Image1 and Image2

To generate the probability map for each optical
flow, we applied the Otsu thresholding method.
This technique effectively highlights the regions
most likely to represent gaps. Following this, we
overlaid the images, employing binary operations
on each pixel to accurately identify the gaps. This
approach proved to be highly effective, consistently
yielding reliable results even when dealing with
suboptimal/bad optical flow maps.



Fig. 5: [Top left] - Optical Flow 1, [Top Right] -
Optical Flow 2, [Bottom] - Binary Mask Image
obtained after Thresholding with Position Mark-
ers

Figure 5 illustrates that the left optical flow map
lacked accuracy, primarily due to image shakiness
and distortion from the drone’s camera. Similarly,
the right side image also hinted at a potential gap
near the bottom. However, when these maps were
superimposed, the resulting composite enabled us to
obtain a precise binary mask. This mask effectively
highlighted the areas with the highest probability
of being gaps, as demonstrated in the figure. In the
binary image, the green dot represents the center of
the image, which has been adjusted upwards by 150
pixels for 960 X 720 images (determined based on
an experimental basis) to account for the camera’s
tilt. Meanwhile, the red dot indicates the center of
the contour.

C. Softwares and Frameworks
The project employed Python and PyTorch for

programming and deep learning tasks, respectively,
with OpenCV for image processing. DJITelloPy
was used for drone control, ensuring a cohesive

and efficient system for real-time autonomous drone
navigation.

V. PATH PLANNING AND CONTROL

A. Initial Positioning and Movement

Considering the wall’s specified distance of 1.8 to
3 meters from the origin, with a possible tilt angle
of -20 to +20 degrees, the drone’s initial strategy
involves a predetermined forward movement. This
initial maneuver is designed to compensate for
potential takeoff errors or hardware inconsistencies,
ensuring that the drone starts from a consistent and
reliable position relative to the wall.

B. Gap Detection and Alignment

Utilizing the Perception Stack, the drone com-
putes the optical flow from its camera feed and
post-processes this data to identify the center of the
largest gap in the wall. As detailed in the Perception
Stack section, the processed output is a binary im-
age with a red dot marking the estimated gap center
and a green dot at the image center, surrounded
by a threshold-indicating green circle. This setup is
integral to the subsequent visual servoing algorithm.

Fig. 6: Visual Servoing in Action. [Top] - Drone
not aligned with Gap Center. [Bottom] - Drone
Aligned with Gap Center

C. Visual Servoing Implementation

Visual servoing is a critical component of the
drone’s navigation strategy. It operates by ensuring



that the red dot (gap center in the image) is aligned
within the green circle (the threshold around the
image center). When the alignment is achieved,
indicating that the drone is positioned correctly
relative to the gap, a forward command is issued
to the drone.
The visual servoing mechanism is executed using
the position control feature in the DJITelloPy li-
brary. The process involves calculating the distance
between the red and green dots on the x and y
axes of the image plane. As the perception stack
does not provide depth information, an experimental
approach was taken to estimate a workable depth
between the drone and the wall, considering the
known distance range. This estimation was used
to compute a scaling factor, transforming the pixel
distances into metric units. The drone then moves
according to these calculated distances, repeating
the process until the desired alignment is achieved.

D. Depth Estimation and Scaling Factor

The depth estimation process is crucial for the
success of the visual servoing strategy. Without
direct depth information from the perception stack,
the team conducted multiple trials to identify a
practical distance between the drone and the wall.
This experimental distance was then used to derive
a scaling factor, crucial for converting the distances
on the image plane to real-world metrics. This
scaling factor plays a pivotal role in ensuring that
the drone’s movements are precise and aligned
with the real-world dimensions of the environment.

In summary, the planning and control strategy of
the drone involves an initial forward movement for
position normalization, followed by gap detection
and alignment using a sophisticated visual servo-
ing approach. This approach leverages experimental
depth estimation and scaling to translate image
plane measurements into real-world navigational
commands, ensuring precise and effective move-
ment toward the target gap.

VI. RESULTS

Below is the link to a live demonstration show-
casing the capabilities of our perception, planning,
and control stack in action. LIVE DEMO!!

A. Optical Flow Results for Blender Test Set

Fig. 7: Blender Environment 1: Brick Texture

Fig. 8: Blender Environment 2: Granite Texture

https://drive.google.com/file/d/1WWX_RMkumzMs1UJkrsq5F6354gpMbymZ/view?usp=sharing


Fig. 9: Blender Environment 3: Paper Texture

Fig. 10: Blender Environment 4: Stone Texture

B. Important Frames from the Live Feed of Demo

Fig. 11: Snippets from the Test Run



VII. CONCLUSIONS AND FUTURE WORK

A. Conclusions

This project successfully demonstrated the capa-
bility of a small drone, specifically the DJI Tello
Edu, to autonomously navigate through irregularly
shaped windows in a controlled environment. Em-
ploying the NVIDIA Jetson Orin Nano, we devel-
oped a robust perception stack that utilizes optical
flow for gap detection and a visual servoing ap-
proach for precise navigation. Our approach effec-
tively overcomes the challenges posed by limited
computational resources and the constraints of using
a monocular camera system. The live demonstra-
tions and tests confirmed the viability of our system
in accurately identifying and traversing through the
largest gaps in various window shapes, highlighting
the potential of compact drones in complex naviga-
tion tasks.

B. Future Work

Looking forward, several enhancements and
expansions are envisioned for this project:

• Depth and Pose Estimation: One of the
primary areas for future development is
the integration of methods for depth and
pose estimation alongside optical flow.
Current reliance on visual cues from a
monocular camera limits the robustness
of the navigation system. Implementing
depth estimation algorithms would enable
more accurate and safer navigation through
complex environments. Techniques such as
stereo vision or structured light approaches
could be explored to provide the necessary
depth information.

• Sensor Fusion with Onboard Odometry:
Another critical enhancement is the fusion
of camera data with onboard inertial
measurement unit (IMU) sensors for improved
localization. This sensor fusion would provide
a more comprehensive understanding of the
drone’s position and orientation in space,
facilitating navigation in truly unknown
environments. By leveraging the IMU data,

the system can be more resilient to visual
ambiguities and environmental variations,
paving the way for real-world applications
beyond controlled settings.
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