
Navigation through Unstructured Environments
Ankush Singh Bhardwaj

abhardwaj@wpi.edu
Sri Lakshmi Hasitha Bachimanchi

sbachimanchi@wpi.edu
Anuj Pradeep Pai Raikar

apairaikar@wpi.edu

Abstract—Flying through irregular and unknown shaped
windows becomes a necessity for search and rescue, exploration
or reconnaissance operations. This project presents the
perception and navigation stack and its integration with the
designed perception stack for the autonomous navigation of
a DJI Tello Edu drone through an approximately known
environment. Optical flow can be calculated from the oscillation
of the drone, to estimate appropriate servoing commands.
To this end, we employed the SPyNet deep neural network
for robust optical flow estimation for the scene, and classical
computer vision techniques for effective detection of the gaps
of unknown shape, size and location. Further, the results were
used for servoing and navigation of the drone safely through
the gap.

I. ENVIRONMENT AND GOAL

The test track consists of a textured board that contains
multiple irregular shaped gaps of different sizes. The window
is given as shown in Fig. 1. The approximate location of the
perforated board was provided. The objective is to correctly
segment the background from the foreground and navigate
through the gap without collision/contact with any of the
boundaries.

Fig. 1. Real-life Scenarios

II. IMPLEMENTATION

Our methodology involves capturing pairs of images as
the drone moves parallel to a wall containing gaps. These
images are then processed using the SPyNet algorithm to
infer dense optical flow, capturing the dynamic movement
of pixels between consecutive frames. The resulting optical
flow magnitudes are color-mapped to provide a visual
representation of the motion field. Subsequent analysis

includes contour generation, Canny edge detection, and the
identification of the largest contour in the scene. The first
moment of the pixels of the largest contour, is the centroid
of the largest gap and serves as the calculated navigation
point for the drone to pass through. Thus, showcasing a
comprehensive solution for effective drone navigation in
confined spaces. Each of the step is discussed in further
sections.

A. Perception Stack
1) Navigation for Iterative Image Capture: We let the

drone stabilise at a height after takeoff and then command
it to navigate to a position approximately in front of the
gaps. This ensures that our drone camera’s field of view is
majorly occupied by the wall and the irregular shapes. A
successful image capture would contain all the gaps. Once
the first image is captured by the drone at this position, we
give a command to the drone to sharply move along the
horizontal direction(positive X-axis in the environment). At
the consequent new position, another image is captured by
the drone. The drone is returned to the original position
after the second image capture. The two above images are
used as the input for our Deep Neural Network in the next step.

2) Estimating Optical Flow using Deep Learning Models:
Optical flow, a fundamental concept in computer vision,

serves as the cornerstone of our drone navigation approach. It
involves the analysis of pixel-level motion patterns between
consecutive frames, providing a dynamic representation of
the environment’s motion field. The optical flow information
is crucial for understanding how the drone is moving relative
to its surroundings.

It relies on the assumption of brightness constancy,
wherein the intensity of a pixel is expected to remain
constant between frames. This assumption allows us to
track the apparent motion of visual features accurately.
Our implementation focuses on dense optical flow,
capturing motion vectors for every pixel in the image
using SPyNet(Spatial Pyramid Network). SPyNet is one
of the state-of-the-art deep learning approaches to estimate
optical flow and is trained on a variety of large datasets. We
found the ”SintelFinal” pre-trained model to perform really
well on images captured by Tello. It is a comprehensive
approach provides detailed information about the entire scene,
enabling the drone to navigate through intricate environments.



Since the network is light, gives us a quick inference, and,
is also very robust. Therefore, it follows that our navigation
will be faster.

3) Background Foreground Segmentation: The output is
a ”.flo” file of vectors that can be visualized as a mapping
of magnitudes of flow. We exploit this to perform our
background estimation. The minimum optical flow lies within
the boundaries of the gaps. Whereas the other areas across the
wall are seen to be having a higher magnitude of flow. This
fact is used to discern the background and the wall although
their appearance is similar. The image is then subjected to
conversion to Grayscale image followed by thresholding. This
will make it look like a Binary mask. We then use this mask
for gap boundary detection. We then apply the findcontours
function and apply a little bit of magic explained in section
IV to obtain the centroid of our largest gap.

4) Safe Waypoint Detection: On the optical flow output,
we employed contour generation and Canny edge detection.
The grayscale optical flow magnitudes serve as input for
contour extraction, allowing us to identify regions of interest.
Canny edge detection enhances the accuracy of contour
identification by highlighting boundaries, while Gaussian
blur is applied to mitigate noise and improve the quality
of boundary detected. Once we have identified the largest
gap in the wall, we can use the cv2.moments to calculate
the centroid. This is achieved by analyzing the generated
contours, with emphasis on the largest contour as a potential
passage for the drone. The center of this contour is then
calculated and used as the optimal navigation waypoint into
the ”UNKNOWN” World.

B. Navigation through Gap
The centroid point, ensures precise and adaptive drone

navigation through complex environments. The centroid
obtained is then aligned with the image center using move
commands on the tello. Considering the gap is large enough
for the drone to pass, when the center of the drone and the
gap centroid align; the drone is commanded to move forward
in the direction of the gap. The Tello is asked to perform a
safe landing after moving across the wall to end the trial.

III. DEPLOYMENT ON DJI TELLO

After establishing the communication between NVIDIA
Jetson Orin Nano with the Tello drone using the DJITelloPy
library, the drone is initialized and its takeoff sequence is
initiated. The drone is instructed to move to an approximate
location near the gap and its movement is controlled by
go xyz speed function. The drone’s video stream is activated,
and frames are captured for further analysis. Two images,
namely one.png and two.png, are saved during the flight for
subsequent processing by SPynet. The resultant output image
with dense optical flow map is processed to analyze the flow.

Contour analysis is conducted, and the centroid of the largest
contour is calculated.

Fig. 2. Laboratory Testing Scenarios

The movement required for the drone is calculated based
on the centroid of the largest contour is calculated. Depending
on the calculated movement, flags (movexy, movex, movey)
are set to indicate the desired direction of drone movement.
Based on the calculated movement, the drone is instructed to
move.

IV. TIPS AND TRICKS USED FOR BETTER RESULTS IN GAP
DETECTION

Real life deployment is not always direct. The optical flow
calculated by your drone is not always accurate, might be
the way two simultaneous photos were taken or the lighting
conditions. The drone doesn’t allow for it to move a distance
less than 20 cm, hence to have good inputs for the neural
network, we take advantage of the drift experienced by the
drone. A command to move in left or right direction is given
and then the drone is asked to return back to its original
position; since the drone drifts, it never comes back to its
original position it is always off by some distance. This helps
us take good photos to calculate optical Flow. Fig.4. shows
the inputs given to the neural network.

Using only findContours() will not yield a good result
is calculating the gap as the boundaries many not be
differentiated properly. This lead us to use Canny edge
detection to find the gap boundaries and mark them with
thick marker size so that it appears like a closed contour. On
using findContours() on this image, it will definitely give us
the largest gap to be the be biggest contour on the image.
Using a ’gray’ colour map while visualizing the flow also
helped us compute the gap better.



Fig. 3. First Photo Capture during Live Demo for optical flow calculation

Fig. 4. Second Photo Capture during Live Demo for optical flow calculation

Keeping the height to the minimum after take off will avoid
the drone from capturing the area and predicting it to be a
possible gap for the drone to move through as seen in Fig.4.

V. TESTING

The SpyNet network was first tested on the images obtained
from simulation on the Blender. The Fig.8 to Fig.17 show the
the gap detected in simulation and the IoU values obtained
when compared with the Ground Truth. A script was written
to convert the flow obtained to binary so as to compare it with
the ground truth which was obtained by setting the pass value
to 2 in blender and get the IoU values.

For the real life scenario , the navigation stack integrated
with the built perception stack was tested on the real
environment consisting of a irregular shaped window as in
the figure for the drone to fly through without any collision.
The real-time flow image, contour detection and centroid can

be seen in the images.

Fig. 5. Real-time Flow Image

Fig. 6. Real-time Contour Detection

VI. REFERENCES

1 Principles of Robot Motion: Theory, Algorithms, and
Implementations” by Howie Choset, Kevin M. Lynch, et
al.

2 https://docs.px4.io/main/en/flight stack/controller diagrams.html
3 https://github.com/anuragranj/spynet
4 https://github.com/damiafuentes/DJITelloPy/tree/master/djitellopy
5 https://dl-cdn.ryzerobotics.com/downloads/Tello/Tello

SDK 2.0 User Guide.pdf
6 https://www.deeplearningbook.org/
7 https://learnopencv.com/



Fig. 7. Real-time Contour Detection with Centroid

Fig. 8. First Photo Capture for Arbitrary Shape 1

Fig. 9. Second Photo Capture for Arbitrary Shape 1

Fig. 10. Simulation Flow Image for Arbitrary Shape 1

Fig. 11. Simulation Contour Detection for Arbitrary Shape 1

Fig. 12. Ground Truth Comparison Result: IOU 0.95



Fig. 13. First Photo Capture for Arbitrary Shape 2

Fig. 14. Second Photo Capture for Arbitrary Shape 2

Fig. 15. Simulation Flow Image for Arbitrary Shape 2

Fig. 16. Simulation Contour Detection for Arbitrary Shape 2



Fig. 17. Ground Truth Comparison Result: IOU 0.75


	Environment and Goal
	Implementation
	Perception Stack
	Navigation for Iterative Image Capture
	Estimating Optical Flow using Deep Learning Models
	Background Foreground Segmentation
	Safe Waypoint Detection

	Navigation through Gap

	Deployment on DJI Tello
	Tips and Tricks used for better results in Gap detection
	Testing
	References

