
Mini Drone Race – The Planning And Control
Saga!

Dushyant Patil
Department of Robotics Engineering

Worcester Polytechnic Institute
Worcester, United States of America

dpatil1@wpi.edu

Keshubh Sharma
Department of Robotics Engineering

Worcester Polytechnic Institute
Worcester, United States of America

kssharma@wpi.edu

Abstract—This project presents an approach to build a plan-
ning and control stack for DJI Tello drone for flying through
objects of known shape and size. We successfully used the deep
learning model trained in previous assignment for semantic
segmentation to detect a window, calculate localized pose of drone
and traverse through the window gap for multiple windows in
the given environment.

I. PROBLEM STATEMENT

The aim of this project is to estimate pose of a window of
known shape and size. For this we will be using the semantic
segmentation followed by a set of post-processing algorithm to
get an estimate of window pose in drone frame. This estimated
pose is used to align the drone with the window center and
the estimated depth is used to successfully travel through the
gap.

II. WORLD MAP

The data provided to us was the text format which consists
of information about boundaries of ’world’ and approximate
pose of windows.

1) boundary: This parameter is defined as[
xmin ymin zmin xmax ymax zmax

]
where, xmin, ymin, zmin defines the lower left point &
xmax, ymax, zmax defines the upper right point of the
rectangular environment.

2) window: This parameter is defined as:[
x y z xdelta ydelta zdelta
qw qx qy qz Xdelta Ydelta Zdelta

]
where, x y z represents the approximate center of
the window in meters. qw qx qy qz represents the
approximate orientation of the window as a quaternion.
While the remaining parameters are variances in the
pose in a Gaussian distribution.

We load this data in blender as cube objects using
primitive_cube_add function of bpy module. The Wash-
burn laboratory has exactly same setup which replicated the
map file given.

III. PLANNING AND CONTROL STACK

A. Initial Positioning

Since we’re provided with the rough locations of all win-
dows in the world frame we decided to fly our drone to roughly

140cm high which is the center height of each window and
roughly 180cm in front of each window which works as a
rough setup point for fine tuning by the use of perception
stack as explained ahead.

B. Semantic Segmentation using DL

For this project, we choose to use Unet.An encoder and a
decoder make up the network. By using convolutional layers to
extract information from the input image, the encoder reduces
the spatial dimensions. Pixel-wise segmentation masks are
then produced by the decoder once these features have been
upscaled and improved. The use of skip connections, which
link corresponding levels in the encoder and decoder, is unique
to UNet. This improves segmentation accuracy by maintaining
minute information during the upsampling process.
The latest frame captured by DJI Tello is inferred using
the pre-trained model which gives us segmentation mask for
individual windows present in the frame. Fig 1 shows an
example frame captured by the drone and Fig 2 shows the
segmentation mask.

Fig. 1: Captured frame from DJI Tello

C. Closest window estimation

We used largest area criteria to estimate closest window
among the predicted masks. We used contour detection with
the help of opencv function cv2.findContours. We sorted these
contours in the ascending order of area occupied by contours



Fig. 2: Inference from trained Unet model

in pixels. We use the last contour as our closest window. As
these contours are not perfect rectangles or squares, we apply
further post processing to estimate corners of windows. We
tried two different approaches which gave us certain accuracy
at certain estimation speed. Below image show the inference
and largest area detection using this method:

Fig. 3: RGB Images with applied homography and different
backgrounds

Fig. 4: Inference with closest window estimation

D. Delaunay Triangulation Based Estimation

To approximate the exact corners of the closest window, we
apply erosion-dilation on the predicte mask followed by Canny
edge detector. On the Canny edges, we apply probabilistic
Hough transforms to get set of lines. We find intersection of
all lines making an angle of 45 degrees or more with each
other. Through all the intersection points, we apply Delaunay
triangulation. On these Delaunay triangles, we find edges
which are part of only one triangle. These edges represent
outer edges of the estimated window shape. Using the points

on these outer edges, we approximately fit a quadrilateral and
the corners of these corners give us the corners of window
which are pretty accurate. But this method takes a lot of time
(around 1 s per frame). Thus we tried an alternative which
would give similar accuracy in less time. Below images 5
show this algorithm which shows all the intermediate result
of image processing:

Fig. 5: Delaunay Triangulation pipeline

E. Rectangle Fitting

On the closest estimated window, we apply dilation-erosion.
On this image, we approximate a convex hull. On this convex
hull, we find the maximum and minimum x and y coordinates.
Using these coordinates, we fir a rectangle covering enclosing
the predicted mask. On the edges of the rectangle we try to
find the points which are closest to the vertices but lie withing
the white region of our predicted mask. This gives a good
estimation of corners of the window. This method gives us
real time corner detection with good accuracy. Below images
?? show the rectangle fitting pipeline to get bounding box of
closest window:

Fig. 6: Rectangle Fitting Corner Estimation

F. Pose Estimation

We use Perspective N-Points method to estimate the pose
of the window. We use cv2.solvepnp function to estimate the



Fig. 7: ”Reprojecting the Window center in drone camera
frame

pose of closest window in camera frame. We reproject the
coordinate frame on the image as shown in image 7 below:

G. Control Stack

Now that our drone is roughly in front of the window and
have a calculated pose with respect to it we then proceed
traverse through it.

1) We first align the position of drone with the calculated
window center from PnP by moving the drone in Y-axis
& Z-axis of the drone frame.

2) After the position alignment is complete we adjust the
yaw of the drone to compensate for the rotation of
window with respect to drone to avoid collision with
corners.

3) Finally we use the estimated depth from PnP and move
the drone in X-axis of the drone frame with an extension
of about 40cm to make sure the drone always clears the
window regardless of the unreliable in-built odometry.

IV. CONCLUSION

Through this project we were able to build a perception,
planning and control stack for DJI Tello which uses a com-
bination of deep learning and traditional computer vision to
traverse through a series of window openings in a known set-
ting. The perception stack is light enough to run on the Jetson
Orin Nano and still capable of traversing the complicated path.

V. CHALLANGES FACED

1) The DJI Tello drifts with uncertainity during takeoff
when using the takeoff command from the SDK. We
were able to mitigate a lot of that issue by cheking for
damage on the blade guards and clibrating the on-board
IMU using the android app.

2) The perception stack is weird in the sense that it pro-
duces random errors in segmentation mask which needs
to be processed and that creates issues. We believe a
more trained model for segmentation masks will be able

to solve this problem but this can’t be verified at the
moment.

3) The DJI Tello also cannot handle multiple UDP calls
simultaneously and gives false positive response to com-
mands in an unrealiable manner. To solve this issue we
need to give long delays before every motion action but
it reduces the overall speed of the task.

4) Also since we were using the roughly known position
of the window and already flying close to the center
we were not able to perform really small adjustments in
position and rotation due to the SDK’s limitations.

REFERENCES

[1] A Quaternion-based Unscented Kalman Filter for Orientation Tracking
[2] Class Notes by Prof. Nitin Sanket
[3] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional

Networks for Biomedical Image Segmentation,” 2015. Available:
https://arxiv.org/pdf/1505.04597.pdf

[4] “Unet from Scratch —— Unet Tutorial —— Developers hutt,”
www.youtube.com.

[5] “Implementing original U-Net from scratch using PyTorch,”
www.youtube.com.

[6] “PyTorch Image Segmentation Tutorial with U-NET: everything from
scratch baby,” www.youtube.com.

[7] Tello SDK 2.0 User Guide.


	Problem Statement
	World map
	Planning and Control stack
	Initial Positioning
	Semantic Segmentation using DL
	Closest window estimation
	Delaunay Triangulation Based Estimation
	Rectangle Fitting
	Pose Estimation
	Control Stack

	Conclusion
	Challanges Faced
	References

