
Mini Drone Race – The Planning And Control
Saga!

Team Nimbus Navigators
One Late Day

Chaitanya Sriram Gaddipati
Department of Robotics Engineering

Worcester Polytechnic Institute
Worcester, Massachusetss 01609

Email: cgaddipati@wpi.edu

Ankit Talele
Department of Robotics Engineering

Worcester Polytechnic Institute
Worcester, Massachusetss 01609

Email: amtalele@wpi.edu

Shiva Surya Lolla
Department of Robotics Engineering

Worcester Polytechnic Institute
Worcester, Massachusetss 01609

Email: slolla@wpi.edu

Abstract—In this project, we developed a sophisticated per-
ception stack for DJI Tello EDU quadcopter to enable precise
navigation through multiple windows, whose 3D poses were
approximately known in advance. To achieve this, we employed
simulation-to-reality (sim2real) techniques to generate synthetic
data, creating a robust training set for our neural network
model. The chosen architecture, YOLOv8, was trained to identify
and segment the front window from a complex environment of
multiple windows. Once the segmentation mask was detected,
we extracted the corners and applied Perspective-n-Point (PnP)
algorithm to calculate the relative pose of the front window which
is essential for guiding the quadcopter through the windows
safely.

I. INTRODUCTION

Autonomous navigation of quadcopters demands a robust
perception stack for effectively sensing and understanding the
environment, avoiding obstacles, planning paths, and executing
precise movements. In our project, we focused on building the
perception pipeline of the DJI Tello EDU quadcopter for its
navigation through multiple windows in an environment where
the approximate 3D poses of these windows were known as
apriori.
The core challenge for the quadcopter is to detect and navigate
through the correct window when presented with several
similar options, which necessitates advanced recognition abil-
ities. To address this, our approach harnessed the power of
simulation-to-reality (sim2real) transfer, where synthetic data
generated using Blender and data augmentation resulted in a
diverse and robust dataset. This dataset was instrumental in
training the state-of-the-art neural network model, YOLOv8,
for the segmentation of the target window against a backdrop
of multiple potential distractors.
Once the target window was obtained, corners were inferred
from it by using computer vision techniques like contour
detection, erosion, and dilation. Subsequently, these features
along with the approximate 3D locations of the window’s
corners were processed using the Perspective-n-Point (PnP)
algorithm to calculate the window’s pose relative to the

quadcopter for its effective navigation through the window.
The subsequent sections highlight our methodology to achieve
our objectives. Our project’s success showcases the potential
of sim2real methodologies in refining neural networks, which
could significantly enhance the autonomous navigation sys-
tems of quadcopters.

II. DATA GENERATION

To train a neural network for window segmentation, we
needed a dataset of images and labels consisting of windows
in an environment to train the network.

A. Design decisions

1) We had the choice of either choosing window corners or
the window segmentation mask to be the output of our
network. We chose to predict the entire window mask
as the output because occluded corners would make it
difficult for the network to detect them if we had chosen
corners as the output. Even if the segmentation mask of
the window was not perfect, we were of the opinion that
we could use image processing techniques to refine the
mask and infer corners from it.

2) The other design choice was choosing between two
potential approaches to window mask detection. The first
involved predicting a combined mask for all windows
present in the environment and subsequently identifying
the front window. This would have necessitated a two-
network architecture: one network to detect all window
masks and a subsequent network, or a set of computer
vision algorithms to single out the front window.

However, upon careful consideration, we determined that a
single-network solution directly predicting the front window
mask from the environment image was more efficient. This
decision relied on our ability to compile a sufficiently diverse
and comprehensive dataset to effectively train the network. By
doing so, we successfully streamlined the system, eliminating
the need for a second network and additional processing



Fig. 1. (Left to Right): 1. Frame 2. Full segmentation mask 3. Front window
mask

stages. This not only simplifies the architecture but potentially
reduces inference time. The success of this approach relies
on our dataset’s quality, which we curated to ensure the
network’s ability to discriminate the front window amidst
similar structures.

B. Data generation using blender

For the project, we developed an automated data genera-
tion pipeline using Blender, with a custom script to control
rendering settings, camera and lighting placement, and the
manipulation of window objects within the scene. Six windows
were modeled to specific aspect ratios, and the script varied
the lighting by adjusting the intensity of two light sources. Ad-
ditionally, the camera pose was dynamically changed through
the script to capture the scene from a range of angles and
positions. The blender setup can be seen in fig 7 and the
compositing node tree is in fig 8.
This procedure generated a diverse dataset of 4600 rendered

images, which were saved to designated directories. This
collection of images, featuring varying lighting conditions and
perspectives, is essential for training a robust neural network
for window detection. An example set of images generated is
shown in fig 1.
To create accurate ground truth labels for the neural network,
we utilized Blender’s Pass Index feature, which allowed us
to extract segmentation masks of the front window. This was
particularly useful in complex scenes with multiple windows,
ensuring the network would be trained on the correct window
mask. This comprehensive dataset, complete with precise seg-
mentation masks, provides a strong foundation for the neural
network to learn from and perform effectively in window
detection tasks.

III. WINDOW DETECTION

As we had our data now, we had to train a neural network
using our data for window mask inference.

A. Design decision

Our deep learning model had to be lightweight, fast, and
accurate so as to run smoothly on our NVIDIA Jetson Orin
Nano. We considered the Segment Anything Model (SAM)
and YOLOv8 models as they were instance segmentation
models and could segment out objects from the environment.

We chose YOLOv8 because of its better real-time inference
capability.

B. Training

A Python script was utilized to convert segmentation masks
into YOLOv8-compatible labels. It processes binary mask
images, extracts contours, and normalizes these into polygon
coordinates relative to image size. Each mask’s coordinates
are saved as a text file with a class identifier and contour
points, creating a formatted dataset ready for YOLOv8’s object
detection training.
Out of the 4600 images, we split the dataset into 4500 images
for training and 100 images for testing. We could see that the
loss decreased with every epoch of training.
We wanted to test the inference on our local machine first.
So initial tests on local machines yielded successful inference
with the model capable of generating masks for all test images,
albeit with some imperfections such as unwanted patches and
holes. We were confident however that we could use image
processing techniques to infer corners from them.

C. Generalization

The principal challenge encountered with our model was
the lack of generalization to diverse test cases. Although
the network worked well on some images it failed most of
the times when tested on real world data. This issue likely
stems from the training dataset being only made up of images
rendered on a single Blender environment without much
warping of the window. To enhance the model’s performance,
we needed to diversify our training data to better mimic the
varied angles and environments that a drone would encounter.
Employing data augmentation techniques on window images
is a viable solution to enrich our dataset without incurring
the significant computational costs associated with rendering
additional images in Blender.

IV. DATA AUGMENTATION AND RETRAINING

Fig. 2. A small set of real world data with manual labels

In the initial stage of our dataset augmentation, we lever-
aged approximately 100 single-window images, each paired
with its mask, created using Blender. This setup allowed us
to simulate diverse lighting conditions and camera angles,



thereby mimicking the complexity of real-world scenarios.
To further enrich the dataset, we included real-world single-
window images with varying degrees of occlusion (see fig 2).
Unlike the synthetic Blender data, these images required
manual annotation to generate accurate window masks. For
this, we utilized CVAT, a versatile data annotation platform,
to compensate for the lack of Pass Index functionality available
in Blender.
The heart of our pipeline is the perspective transformation: by
applying calculated distortions to window contours, we created
a suite of images that mirror the challenging perspectives a
drone would face in its operational setting. This variety in
training data is critical for developing a model that can reliably
identify windows from any angle or distance.
We then used the alpha matting technique for a seamless
blend of the windows into five different backgrounds, creating
composite images that maintain realism. These processes
collectively contribute to the creation of a rich and diverse
dataset. The complete pipeline can be seen in fig 3.

Integrating these synthetically generated images with our
pre-existing dataset resulted in a robust collection of 14,100
image and mask pairs. Subsequent retraining of our YOLOv8
network with this comprehensive dataset for 10 epochs yielded
excellent results. The network demonstrated remarkable per-
formance, accurately detecting window masks in all tested
images and exhibiting significant generalization capabilities
when used in real-world scenarios. The loss metrics are plotted
at each epoch in fig 9. The network when run on the jetson orin
nano had an inference times around 33ms which is sufficient
and prevents the need to export the model to tensorrt or
onnx formats. One observation made while implementing the
network on jetson nano is the need to carefully install the
proper versions of all the necessary libraries for it to work.
In conclusion, our data augmentation pipeline is instrumental
in introducing realistic variability. The strategic implementa-
tion of perspective transformations and environmental com-
positing has been critical in developing an advanced window
detection model that promises high efficiency in practical
applications.

V. CORNER INFERENCE

During the post-processing phase of our window detection
algorithm, we encountered a challenge with the preliminary
rectangular masks generated by the network. These masks
were full of rough edges and presented sporadic patches,
resembling holes, which impeded direct corner detection using
traditional methods such as the Harris Corner Detection algo-
rithm available in OpenCV. To resolve this, we employed a
series of morphological operations — specifically erosion and
dilation. These operations were instrumental in refining the
masks by eliminating the undesired patches and smoothing the
edges. Once the masks were preprocessed, we harnessed the
findContours function in OpenCV to delineate the periphery
of the windows accurately. Subsequently, we utilized the
approxPolyDP function, which enabled us to approximate the
contours to a polygon and in doing so, accurately identify

and demarcate the corners of the rectangular masks. In fig 4
the masks generated without any post-processing can be seen
along with the corners detected for a sample frames obtained
from the drone in flight.

VI. CALIBRATION

Before performing pose estimation, the drone camera needs
to be calibrated to get the camera intrinsic matrix and dis-
tortion coefficients. We used a series of checkerboard images,
taken from multiple angles and distances, to map the camera’s
intrinsic parameters. These parameters include the camera’s
lens properties and its spatial orientation in relation to the
observed scene. The calibration results can be seen in fig 5.

A. Camera Matrix

The camera matrix we obtained contains intrinsic param-
eters that are used for the geometric interpretation of im-
ages. This matrix enables us to convert three-dimensional
coordinates into two-dimensional ones through perspective
projection and is tailored to our drone camera.

K =

fx 0 cx
0 fy cy
0 0 1

 (1)

K =

917.35271 0 480.97134
0 917.10434 365.57078
0 0 1

 (2)

B. Distortion Coefficients

These coefficients indicate the lens distortion present in our
camera. Correcting for radial and tangential distortions is nec-
essary for better pose estimation. With these coefficients, we
can ensure that the images we capture are a true representation
of the environment.

D =
[
k1 k2 p1 p2 k3

]
(3)

D =
[
0.02456 −0.59580 −0.00039 −0.00017 1.84865

]
(4)

VII. POSE ESTIMATION USING PNP

With corners inferred the pose of the window relative to the
drone is estimated. We implemented Perspective-n-Point (PnP)
pose computation using solvePnP function of OpenCV to do
this. The solvePnP estimates the object pose given a set of 3D
object points, their corresponding 2D image projections, the
camera intrinsic matrix and the distortion coefficients. We have
the 2D corners of the window that we had inferred. We also
have the camera intrinsic matrix and the distortion coefficients
from our calibration process. We had to determine the object
point locations in 3D so as to use solvePnP.



Fig. 3. Data augmentation pipeline to generate more diverse data

Fig. 4. Row 1: input image frames; Row 2: YOLOv8 prediction mask Row
3: Inferred corners after post-processing

Fig. 5. Calibration on checkerboard viewed by the drone camera from
different angles

A. Design decision

Our main goal is to determine the center location of
the window relative to the quadcopter for us to use the
go_xyz_speed command of DJI Tello to navigate the drone
to the center location. To get the 3D locations of all the corners
a real world coordinate system is placed at the center of the

window as shown in fig 10. Approximate length and breadth
of the window are known apriori so the 3D coordinates of the
window can easily be obtained. This deliberate positioning is
critical as it allows for the direct extraction of the window’s
center location from the solvePnP’s output pose: which
is the translation vector (tvec) of the pose information
that encapsulates the relative positioning of the drone with
respect to the window.
Once the PnP problem is solved a rotation vector and transla-
tion vector is obtained that can be used to estimate the pose of
drone with respect to the window. The results after applying
PnP to frames in fig 4 is shown in fig 6.

Fig. 6. Window center pose obtained from solving PnP problem

VIII. PLANNING AND CONTROL

Now that the perception stack is working properly and the
drone is able to give the relative pose of the window center
in 3D. The next task is to implement a method to robustly
navigate a given map with multiple windows from the start to
goal location while passing through the windows in a desired
order.
To do this we are give an approximate map of the environment.
Using this map initially we tried to go to a defined waypoint
from the start location, identify the window center, and go
through it, and next repeat this process of going to a given
waypoint and identifying the center for rest of windows. But
this method is not reliable at all. This is because our window
center estimation from PnP algorithm is not very accurate
since we are only using a single image to identify the pose.
To overcome this issue we followed an averaging approach as



shown in fig 10. We have three different coordinate frames in
our problem as shown in fig 10. Xworld−Y world−Zworld is
a world frame present at the start of the environment and the
approximate ground truth map of the environment is given in
this frame. So the center of the first window in this frame is
[Xgroundtruth, Y groundtruth, Zgroundtruth].
Next we have the Xtello − Y tello − Ztello drone frame fixed
on the drone and all the positional control commands given
through the go_xyz_speed command are given in this
frame relatively. The third is the Xwindow − Y window −
Zwindow frame that we placed at the window center for
obtaining the 3D points in PnP problem. Once the PnP
problem is solved we get the rotation and translation vectors
([Rvec, tvec]) as shown in fig 10. Since the center of the
window is at origin in window frame the translation vector
can directly be used to get the location of the drone in this
frame. By reordering the translation vector from [tx, ty, tz] to
[tz, ty, tx] we can convert it to the tello frame. As described
initially this alone is not sufficient for us, so the relative
groundtruth of the window center is calculated in tello frame
from [Xgroundtruth, Y groundtruth, Zgroundtruth] values and
simple vector algebra. This is represented as Posgtrel in fig 10.
An average of [tz, ty, tx] and Posgtrel is taken to get better
estimate of window center with respect to the drone location.
This value is sent to the drone to cross a window with an
additional depth added to pass the window.

IX. CONCLUSION

In this project we were able to demonstrate that a robust
deep learning neural net for front window segmentation can
be trained using the synthetic data generated from blender
and augmenting it through domain randomization. A sim2real
transfer is done by using this network on a DJI Tello drone to
navigate through windows in a given map.
Please use the following links to look at videos of successful
run of the drone in different views: link1: drone POV, link2:
Camera man view.
Some of the challenges faced across the project were discussed
thoroughly in the report. Additionally since the odometry of
the Tello drone is not perfect some of the runs are unsuccessful
because the drone won’t accurately go to the specified coor-
dinates. This is a hardware limitation to which the solutions
should further be explored to create more reliable trajectories.
Overall the performance of the drone is good and it passes
through all the windows present in the map.

REFERENCES

[1] Training Yolov8 on custom datasets.
[2] Yolov8 ultralytics
[3] RBE 595 Lectures.
[4] Opencv calibtateCamera()

https://youtu.be/WQvOlGGIvAI
https://youtu.be/lSRwmYc5FLc
https://youtu.be/lSRwmYc5FLc
https://github.com/computervisioneng/train-yolov8-custom-dataset-step-by-step-guide/tree/master
https://github.com/ultralytics/ultralytics
https://pear.wpi.edu/teaching/rbe595/fall2023.html
https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html#ga687a1ab946686f0d85ae0363b5af1d7b


Fig. 7. Blender environment setup

Fig. 8. Compositing Setup



Fig. 9. training and validation results of the network



Fig. 10. Navigating through the window center


	Introduction
	Data Generation
	Design decisions
	Data generation using blender

	Window detection
	Design decision
	Training
	Generalization

	Data augmentation and retraining
	Corner inference
	Calibration
	Camera Matrix
	Distortion Coefficients

	Pose estimation using PnP
	Design decision

	Planning and control
	Conclusion
	References

