
Team Apache Stealth:
Mini Drone Race - Perception Saga!

Ankit Mittal
Department of Robotics Engineering

Worcester Polytechnic Institute
Email: amittal@wpi.edu

Rutwik Kulkarni
Department of Robotics Engineering

Worcester Polytechnic Institute
Email: rkulkarni1@wpi.edu

Abstract—(UTILIZING 2 LATE DAYS) This
project aims to develop a planning and control stack
for a quadrotor, leveraging a deep learning-based
perception system initially created for navigating
through artificially designed windows. This challenge
draws inspiration from Lockheed Martin’s AlphaPilot
competition. The perception stack, which includes a
neural network, is adept at real-time detection and
segmentation of windows under varying angles and
lighting conditions and has been trained on a dataset
generated in Blender to ensure an accurate represen-
tation of the windows’ visual features. Building upon
this, the project introduces a layer for path planning
and control that utilizes the DJITelloPy package.
This allows the drone to not only select the nearest
window but also to compute and execute a flight
path through it, considering real-time pose estimation
facilitated by Perspective-n-Point methods and refined
through precise camera calibration. Implemented on
a DJI Tello drone, the integrated system is capable
of autonomous navigation, adjusting its trajectory to
successfully navigate through the windows.

I. INTRODUCTION

This project focuses on developing an integrated
perception, planning, and control stack for a quadro-
tor drone to autonomously navigate through win-
dows. Inspired by the AlphaPilot competition by
Lockheed Martin, the work involves a detailed
understanding of the drone’s hardware capabilities,
specifically the image data from the drone’s camera
and interfacing with the drone using the DJITellopy
API.

The perception stack features a Window Detector
using a U-net neural network architecture trained
on a synthetic dataset from Blender. This facili-
tates real-time detection and segmentation, which

is critical for the autonomous navigation task. The
network undergoes rigorous training, with the data
split into training, validation, and test sets, and per-
formance is evaluated using the Dice score metric.

Building on this foundation, the project intro-
duces a planning and control component. Utilizing
a map with rough 3D coordinates of the windows,
the system computes a preliminary trajectory for the
drone, taking into account the odometry to reach
a vantage point for clear window visibility. Once
in position, the perception stack’s real-time pose
estimation, fine-tuned through camera calibration
and Perspective-n-Point methods from OpenCV, al-
lows the drone to precisely navigate through the
windows.

The integrated system’s ability to estimate win-
dow poses accurately and navigate accordingly
is confirmed through extensive testing. This out-
lines the project’s trajectory from machine learning
model training for window detection to the seamless
integration of planning and control algorithms for
autonomous flight in a structured environment.

Link To Videos: Click Here

II. MAP READER AND TEST ENVIRONMENT
SETUP

To evaluate the drone’s autonomous navigation
capabilities, the system is tested against three spe-
cific window configurations, each designed to chal-
lenge different aspects of the drone’s perception and
control stack:

The Map Environment file provided for testing
follows a specific format, as shown in the exam-

https://drive.google.com/drive/folders/1sYUD-RlxEgyVe41aDlNy6H_5Y5_ShTZd?usp=sharing


Fig. 1: Test Environment Image

ple below. However, for the purpose of naviga-
tion, the system primarily utilizes the approximate
x, y and z coordinates of the windows. These co-
ordinates are instrumental in bringing the window
into the drone’s field of view (FOV), which does
not require precise positioning due to the drone’s
perception stack capable of refining the pose esti-
mation.

Link To Test Environment Video: Click Here

III. HARDWARE SPECIFICATIONS

The DJI Tello Edu drone, equipped with a 5-
megapixel camera, captures photos at a resolution
of 2592x1936 pixels and streams video at 960x720
pixels. It has an 82.6-gram takeoff weight and
offers a flight duration of approximately 13 minutes,
powered by a 1.1 Ah/3.8 V battery. With a flight
range of up to 100 meters and a maximum altitude
of 10 meters, the Tello Edu is operated using the
DJITelloPy Edu library in Python, enabling a broad
array of programmable controls and interactions for
educational and development purposes.

IV. WINDOW DETECTION USING DEEP NEURAL
NETWORK

A. Data Generation (sim2real)
For the training of deep learning models, a sub-

stantial and diverse dataset is essential. Generating
such datasets from real-world scenarios is typi-
cally resource-intensive. To mitigate this, we utilize
Blender for synthetic dataset creation, offering a
cost-effective and scalable solution.
The dataset consists of 6000 images, with each
image dimension being (480x360). Data augmen-
tation techniques were applied to ensure the dataset
captures a wide range of environmental conditions.
Mask images corresponding to each window scene
were also produced in Blender. These masks are

critical for the segmentation algorithm’s training,
providing a benchmark for accuracy. This approach
of generating window images alongside their masks
equips the perception system to generalize effec-
tively in various settings.

Fig. 2: Simulated Environment in Blender

Fig. 3: Corresponding Label Image of the of the
Simulated Environment

B. DNN for Segmentation : U-NET
The U-Net architecture is structured as an

encoder-decoder network with a characteristic ”U”
shape, which is where it gets its name. It consists of
a contracting path (encoder) to capture context and
a symmetric expanding path (decoder) that enables
precise localization.

1) Model Architecture: The U-Net
architecture processes images in the format
[batch size, channels, height, width]. The
architecture encodes an input image ([2, 3,
360, 480]) through four successive down-
convolution blocks, reducing spatial dimensions

https://drive.google.com/file/d/1uUSNmdUd-ZiGVLv2rp2mNiRtt8BZpXFu/view?usp=drive_link


while increasing feature channels from 64 to 512.
Max pooling is applied between encoder blocks to
downsample the image. The encoder’s last block
outputs a feature map of [2, 512, 23, 30], which
is then passed through a latent layer ([2, 1024,
23, 30]) that serves as a bottleneck capturing the
image’s most abstract representation.

Fig. 4: U-NET Architecture

The decoder reverses the process with up-
convolutions, halving the channels and doubling the
dimensions at each stage, utilizing skip connections
from the corresponding encoder outputs to preserve
detail. The final decoder output is [2, 64, 368,
480], which is slightly larger than the original due
to (0,0,4,4) padding applied to match the input’s
spatial dimensions post-processing. The network
concludes with an output layer that uses a 1x1 con-
volution to generate a single-channel segmentation
map of the same resolution as the padded input ([2,
1, 368, 480]).

2) Training, Loss Function, and Optimization.:
The U-Net model is trained using the dataset of
simulation images from Blender, divided into train-
ing, validation, and test sets, with distribution being
94 percent, 3 percent, and 3 percent respectively
out of a total dataset size of 6000 images. The
network is implemented in PyTorch and is set up to
train on a GPU if available. It employs the above-
described U-net architecture. Training is driven by
the BCEWithLogitsLoss function, suitable for bi-
nary classification, and uses the Adam optimizer
with a learning rate of 0.0001 and weight decay
regularization set at 0.00001. Model parameters are
iteratively updated through backpropagation during
training epochs, with performance assessed on the

validation set after each epoch and final model
generalization tested on the test set post-training.

C. Evaluation (Results from DNN)

In evaluating our deep neural network, the Dice
score is employed as the primary metric due to
its suitability for segmentation tasks, measuring the
overlap between predicted segmentation and ground
truth annotations. It ranges from 0, indicating no
overlap, to 1, denoting perfect agreement. For our
test set, we utilize genuine drone-captured images to
ensure realistic assessment conditions. The network
has achieved an impressive Dice score of 0.915 for a
single image, indicating high accuracy in segmen-
tation. Moreover, when considering all images in
the test set, the network maintains a high level of
performance, with an average Dice score of 0.8,
reaffirming its reliability in processing real-world
data.

Fig. 5: Image going into the Network



Fig. 6: Image coming out of the Network

V. POST-PROCESSING AND POSE ESTIMATION

A. Corner Detection
This section delves into a detailed examination of

an advanced image processing method developed
for the precise detection of corners within digital
images, with a particular focus on identifying the
corners of windows. Initially, the process entails a
pre-processing phase, where the image is enhanced
to optimize quality, thereby facilitating more ac-
curate analysis in subsequent steps. The core of
the detection technique employs the findContours
algorithm from the OpenCV library, which is adept
at detecting all significant patches within the image.
The algorithm proceeds to compute the centroid of
each detected patch, which serves as a provisional
location of the window corners.

Given the prevalence of noise in the binary
mask image, the method incorporates a crucial non-
maximum suppression step. This step is pivotal
as it selectively filters out less prominent features,
effectively discarding false positives that lack the
strong intensity variations typically associated with
genuine corner points. By doing so, the technique
ensures that only the most salient corners—those
with a pronounced intensity gradient and geomet-
rical alignment with the window structure—are
retained for further analysis.

To identify the nearest window from an image,
our image processing system employs the findCon-
tours function of OpenCV on a pre-processed binary

mask to detect contours, which signify potential
windows. By calculating the area of these contours
and identifying the largest one through the contour
area function, we assume the largest contour to
represent the closest window due to the perspective
correlation between size and distance. This contour
is then segmented, focusing our analysis on the
most proximate window for detailed feature anal-
ysis or further computer vision tasks. While the
initial method for identifying the nearest window
relies on the contour area, a more sophisticated
approach could utilize re-projection error, given
that the approximate real-world coordinates of the
windows are known. However, this method proved
challenging due to the drone’s imprecise odometry
and slight physical deviations in the camera’s angle,
which led to inconsistencies in the results that did
not align with the expected outcomes.

When only three corners are visible, we used the
geometric properties of parallelograms to estimate
the position of the fourth corner of a window. The
concept is based on the fact that in a parallelogram,
the sum of the vectors of adjacent sides equals the
vector of the opposite side.

B. Camera Calibration

Camera calibration is a critical step in ensur-
ing that the pose estimation is based on accu-
rate information about the camera’s geometric and
optical characteristics. To achieve this, we have
employed the camera calibration functions available
in OpenCV. By taking multiple images of a known
calibration pattern (such as a chessboard or grid)
from different angles, we are able to compute the
camera matrix and distortion coefficients which are
essential for correcting lens distortion and obtaining
reliable measurements from the image data.

The calibration process yields the camera matrix
K, which includes the focal lengths fx and fy ,
and the optical centers cx and cy . An example of a
camera matrix might look like the following:

K =

fx 0 cx
0 fy cy
0 0 1





To determine the camera matrix for a drone, we
first resized the camera image to half its original
dimensions, resulting in a new resolution of 480
x 360 pixels. We ensured that the aspect ratio of
the image remained unchanged during this resizing
process. As a result, the following values were
obtained:

Fig. 7: Camera Calibration

K =

453.756 0 236.286
0 454.004 181.620
0 0 1


Distortion coefficients account for radial and

tangential lens distortions. These are denoted as
k1, k2, p1, p2, and sometimes k3, in the case of
severe radial distortion. Sample values for these
coefficients might be given as:

Distortion Coefficients =

= [k1, k2, p1, p2, k3]

= [−0.0272,−0.2419, 0.0022, 0.0006, 0.5753]

With the camera properly calibrated, we can
remove distortion from the images, which allows for
more accurate feature extraction and pose estima-
tion. The corrected image points can then be used
with the Perspective-n-Point algorithm to compute
the pose of the drone in relation to the windows
with higher precision.

C. Pose Estimation
Using the known dimensions of the window,

we established world coordinates at the window’s

center and extracted the corresponding image points
from the captured image via a neural network.
These image points represent the corners of the win-
dow in the image. We then applied a perspective-
n-points (PnP) algorithm to estimate the window’s
pose by aligning the world points with the image
points, effectively determining the window’s posi-
tion and orientation relative to the camera. This
method, while sophisticated, faced challenges due
to inaccuracies in the drone’s odometry and slight
camera tilts, leading to re-projection errors. We
refined the process by enhancing camera calibration
and error correction to improve the pose estimation

VI. PATH PLANNING AND CONTROL

For the autonomous navigation of the quadrotor
through Windows, we developed a path planning
and control strategy that leverages the capabilities
of our perception stack. Our approach focuses on
utilizing the x, y, z coordinates extracted from the
window’s pose to position the drone optimally,
ensuring the target window is within the Field
of View (FOV) of the drone. This is crucial for
the perception system to detect and segment the
window accurately, even when multiple windows
are present in the frame.

A. Coordinate Extraction and Initial Positioning

Our map reader module parses the environment
file to extract the approximate x, y, z coordinates
of the windows. With these coordinates, we cal-
culate an initial waypoint positioned at a suitable
offset—typically 1.5 meters from the window. This
offset is crucial for ensuring that the window is
detectable within the drone’s FOV, considering po-
tential inaccuracies in the map data and the drone’s
current position.

B. Path Execution and Real-time Adjustment

Once the drone is optimally positioned at the
calculated offset, the perception stack evaluates the
window’s pose. If the window is determined to be
in a navigable position, we utilize the DJITelloPy
Library to issue position commands to the drone.
These commands are derived from the obtained
waypoints, which are based on the pose estimation



matrix. With these instructions, the drone maneu-
vers through the window, executing a seamless
transition from approach to passage.

C. Sequential Navigation

After successfully passing through one window,
the drone’s system immediately retrieves the po-
sition data for the next window from the map
reader file. The process is then repeated: the drone
maneuvers to the new offset position, the perception
stack updates the pose estimation, and the drone
navigates through the next window. This sequential
approach is maintained until all windows have been
traversed.

D. Challenges and Corrections

The main challenges we faced included ensuring
that the drone’s camera was correctly aligned to
detect the window despite any camera tilt and
managing the drone’s odometry to maintain accu-
rate tracking. These were addressed by adjusting
the drone’s altitude as needed and by real-time
odometry tracking to correct any deviations from
the planned trajectory.

In summary, the path planning and control system
is intricately linked with the perception stack, al-
lowing the drone to autonomously navigate through
a series of windows. By continuously updating
the drone’s position in relation to the windows’
locations and adjusting its path accordingly, we
achieved a seamless and efficient navigation pro-
cess.

VII. RESULTS

Below is the link to a live demonstration show-
casing the capabilities of our perception, planning,
and control stack in action. LIVE DEMO!!

A. Test Image 1

Fig. 8: Raw Image of the Tilted window

Fig. 9: Output from the DNN

Fig. 10: Output after Pose Estimation

https://drive.google.com/file/d/1uUSNmdUd-ZiGVLv2rp2mNiRtt8BZpXFu/view?usp=drive_link


B. Test Image 2

Fig. 11: Raw Image of the Occluded Window

Fig. 12: Output from the DNN

Fig. 13: Output after Pose Estimation

VIII. OBSERVATIONS

• In the context of pose estimation using
Perspective-n-Point, accuracy is contingent
upon the complete visibility of the window
within the field of view of the drone camera.
Field tests reveal a limitation where the drone
captures only the lower half of the window
when positioned centrally and at a consistent
distance, resulting in a tilted image.

• Furthermore, to improve pose estimation accu-
racy, it is suggested to incorporate reprojection
error calculations from drone odometry. This
step is expected to enhance the robustness of
pose estimation during the drone’s maneuver-
ing phases.

IX. CONCLUSION

In conclusion, the project has integrated a deep
learning perception system into a drone, allowing
it to autonomously navigate through windows. The
U-Net neural network, trained on a dataset created
with Blender, was effective for real-time window
detection and segmentation. The system’s accuracy
was confirmed through camera calibration and the
use of Perspective-n-Point methods for 3D pose
estimation. Tests in controlled environments showed
the system to be accurate, as indicated by the
Dice score metrics. These results suggest that the
system could be used in real-world autonomous
drone applications and provide a basis for further
research in this area.

X. ACKNOWLEDGMENT

The author would like to thank Prof. Nitin Sanket
and the TA of this course RBE595.

REFERENCES

[1] DJITelloPy Link
[2] U-Net: Convolutional Networks for Biomedical Image Seg-

mentation Link

https://github.com/damiafuentes/DJITelloPy
https://arxiv.org/abs/1505.04597

	Introduction
	Map Reader and Test Environment Setup
	Hardware Specifications
	Window Detection using Deep Neural Network
	Data Generation (sim2real)
	DNN for Segmentation : U-NET
	Model Architecture
	Training, Loss Function, and Optimization.

	Evaluation (Results from DNN)

	Post-processing and Pose Estimation
	Corner Detection
	Camera Calibration
	Pose Estimation

	Path Planning and Control
	Coordinate Extraction and Initial Positioning
	Path Execution and Real-time Adjustment
	Sequential Navigation
	Challenges and Corrections

	Results
	Test Image 1
	Test Image 2

	Observations
	Conclusion
	Acknowledgment
	References

