
3D pose estimation of known windows
1st Venkateshkrishna
Masters in Robotics

Worcester Polytechnic Institute
Worcester, MA 01609
vparsuram@wpi.edu

2nd Athithya, Lalith
Masters in Robotics

Worcester Polytechnic Institute
Worcester, MA 01609

lnavaneethakrishnan@wpi.edu
(using 2 late days )

3rd Gampa, Varun
Masters in Robotics

Worcester Polytechnic Institute
Worcester, MA 01609

vgampa@wpi.edu

Abstract—This project focuses on estimating the free space in
a window and flying the drone through them. The approximate
locations are given which can be leveraged to use a start point to
estimate the position of the windows more accurately. Then the
drone estimates the location it needs to go to and then navigates
to the desired location without crashing into the window. The
flight ends after it passes through all the windows. This project
builds on top of the previous project 3a, wherein the pipeline to
detect the pose of the window with respect to the drone is given.

I. INTRODUCTION

In this project, we describe the pipeline developed and
used to detect the position of the window with respect to the
drone camera. First we train a neural network to detect the
corners of the window. After training is done, we calibrate
the monocular camera of the drone to get its K matrix and
distortion parameters. Finally, all of this is brought together,
wherein the image is taken by the drone, and then the image
is first rectified using the distortion parameters, the pixel
coordinates of the corner points are estimated by the neural
network, and finally, using the PnP function, which uses these
image pixel coordinates, the K matrix and actual positions of
the corner points with respect to window center, the position
of the window center with respect to the camera is calculated.
Now after this pipeline is it is integrated into the navigation
pipeline. As per the approximate map of the environment we
know the rough locations of the windows. We direct the drone
to go to a location in front of the approximate location so
that the drone view the window. Then it detects the position
of window and directs it to pass through it’s center and move
some fixed distance away from the window through it’s center.
This is repeated for the three windows. In the subsequent
section, the detection and navigation pipeline is described.

II. USING EFFICIENT NET-B0 FOR LEARNING

Considering that we needed to evaluate a deep CNN on the
Nvidia Jetson Orin Nano during runtime, we chose to select
a relatively light network with a lesser number of parameters,
but still complex enough to understand the data in various
adverse conditions. For this reason, we chose to work with
the efficient net-B0 model. Efficient net B0 has just about
4.5 million parameters compared to 11 million parameters of
Resnet 18 but performs much better. Currently, it is considered

Fig. 1. Checker board pattern used for camera calibration

the state-of-the-art CNN model, for classification, and it is
used in the backbone of many architectures.

Hence we used the efficient net for generating 8 outputs
which correspond to x and y coordinates of the 4 corner points.
We used rmse loss function and starting with the pre-trained
weights trained the entire network.

III. CAMERA CALIBRATION

We used the checkerboard pattern printed on an A4 size
paper. We used a checkerboard pattern, with a 30 mm square
size to generate the K matrix and the distortion parameters.
This was done using the vision toolbox in Matlab. The
checkerboard pattern used for calibration is shown in figure
6. The K matrix obtained is:940.5992 0 470.5372

0 956.1483 359.2646
001.0000


During runtime of the drone, it appears that camera’s output

is a bit dim, but our detection algorithm appears to work well
nontheless and hence is not refined.

IV. POSE GENERATION

To generate the pose of the window. Opencv’s cv2.pnp
is used. PnP or perspective n-point is a method to estimate
the pose of a calibrated camera given a set of n 3D points
in the world and their corresponding 2D projections in the



Fig. 2. Image in runtime

Fig. 3. window1 detection in runtime

image. The camera pose consists of 6 degrees of freedom
(DOF) which are made up of the rotation (roll, pitch, and yaw)
and 3D translation of the camera with respect to the world.
For this to work efficiently 4 points are needed. In Opencv’s
implementation, we get the position of the world with respect
to the camera frame.

V. NAVIGATION LOGIC

We first parse through the text file which gives the ap-
proximate locations of the windows. Then we move the
drone to go 150 cm in front of the approximate location.
It then captures the image, which has window in it. Using
the method described, it calculates the position of the center
of the window. Next the command is given to go 100 cm
further along the line joining the position of the drone and the
estimated center of the window. This process is repeated till
all the windows are covered.

VI. RESULTS

We see that the drone is able to navigate through the free
space in the windows. Based on the estimated positions we
recreated the map in blender and it agrees to a reasonable
extent the real world. We have shown the images and their
pose inference from the drone for all three images.

Fig. 4. window2 detection in runtime

Fig. 5. window3 (occluded window) detection in runtime

Poses of the drone, that is pose before viewing the window
and pose after going through the window.

window 1
pose viewing W1 pose crossing W1

0.65 0.41
1.68 2.79
1.36 1.7

window 2
pose viewing W2 pose crossing W2

-0.55 -0.5
3.42 3.75
1.36 1.35

window 3
pose viewing W3 pose viewing W3

0.6 0.2
5.59 6.45
1.36 1.12

Reconstructed map based on estimates:



Fig. 6. front view of generated map

Fig. 7. isometric view of generated map



VII. VIDEOS

A video of the footage of the drone navigating the obstacle
course is shared in the folder under the name runVideo.mp4

VIII. CONCLUSION

In this project, we built the pipeline for navigating through
free space of known windows. This is done using the video
from DJI Tello’s onboard camera which has a resolution of
720x960. The detection and navigation is done in real time.

REFERENCES

[1] Open CV’s PnP: link
[2] Efficientnet: link

https://docs.opencv.org/4.x/d5/d1f/calib3d_solvePnP.html
https://arxiv.org/pdf/1905.11946.pdf

	Introduction
	Using Efficient net-B0 for learning
	Camera Calibration
	Pose Generation
	Navigation logic
	Results
	Videos
	Conclusion
	References

