
Mini Drone Race - Planning and Control
Ankush Singh Bhardwaj

abhardwaj@wpi.edu
Sri Lakshmi Hasitha Bachimanchi

sbachimanchi@wpi.edu
Anuj Pradeep Pai Raikar

apairaikar@wpi.edu

Abstract—The project presents the planning and control stack
and its integration with the designed perception stack for the
autonomous navigation of a DJI Tello Edu drone through an
approximately known environment. The project is inspired from
Lockheed Martin’s AlphaPilot competition where, the on board
localization and perception stack works fast in real time for
the drone to navigate through multiple windows in the order of
their appearance. Racing across the environment from the start
to the goal, while successfully identifying and passing through
the windows collision free is of utmost importance. To this end,
we planned paths for the DJI Tello drone using PID control and
navigation using knowledge of the map environment given prior.

I. ENVIRONMENT

The test track consists of 3 windows, which shall now be
referred to, more appropriately, as, ”Gates”. They are placed
at different locations and orientations, 3D pose of all of which
are known approximately in the track map co-ordinate frame.
The window is given to be a rectangular board with peculiar
features on it including the WPI and PeAR group logos
and the checkerboard pattern on the corners. Additionally,
a sample format of the window is given in a map format
with appropriate center location and orientation and its
possible variation from the center location and orientation.
The window is given as shown in Fig. 1. This map is used to
store the window coordinates for navigation of drone through
the window without colliding with the external window
boundaries.

II. IMPLEMENTATION

Our approach is to navigate from waypoint to waypoint as
safely and as fast as possible. The waypoints are the center
locations of the gates in terms of height and we aim to stop
at a distance before the gates, so that our drone can take an
image successfully. A successful capture would contain the
window. for detection of the gates and fly through them using
our perception, navigation and control stack. The following
subsections will provide more detail.

A. Gate Detection
We used the U-Net model from training our dataset on

WPI’s Turing GPU clusters to obtain the binary masks of the
gates in real time. We transferred this model checkpoint on to
NVIDIA Jetson Orin Nano and ran the inference during each
time the drone took a shot before the window.

Fig. 1. Test Track with 3 Windows

B. Camera Calibration
The camera calibration matrix with focal lengths, principal

point and distortion parameters. The camera was calibrated
with the images from the drone app. For our race, we
are using the video stream. The resolution of the photos
are different from those taken on the app. We once again
calibrated the camera by using the Calib.io calibration board
from PeAR group’s laboratory. Again, we utilized Matlab’s
Calibration toolbox. With the toolbox, the corner points
of the checkboard are estimated on a set of checkerboard
images captured with DJI Tello with 3D coordinates of the
calibration corner pattern in the world frame. With the help
of the toolbox, the estimated parameters are used to back
project the world points onto the images and are compared
with the observed image points for validation. As expected
the intrinsic parameters of the camera changed with this
change, and were incorporated in our pose estimation code.
The intrinsic and extrinsic parameters of the DJI Tello Edu
after calibration are as follows.

C. 3D Pose Estimation
The 3D pose of the window was calculated using the

cv2.solvepnp function. The camera Calibration had provided
us with the K matrix for the camera, The world coordinate
frame is assumed to be at the bottom left part of the win-
dow.Since the width and height of the window are known,
and the thickness is negligible the world coordinates of the



Parameter Value
Focal Length

[
1.8229× 103 1.8210× 103

]
Principal Point

[
1.2936× 103 968.5153

]
Image Size

[
1936 2592

]
Radial Distortion

[
0.0290 0.0641

]
Tangential Distortion

[
0 0

]
Skew 0

Matrix K

1.8229× 103 0 1.2936× 103

0 1.8210× 103 968.5153
0 0 1



window corner point can be obtained. The pixel coordinates of
the corners are known by applying classical cv approaches as
described above. PnP requires 3 points to solve and minimum
of 4 to get a unique solution.uv

1

 =

fx 0 cx
0 fy cy
0 0 1

 r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3



X
Y
Z
1


The above formula solves for the pose of the window with

respect to the camera frame. In the formula (u, v) indicate the
pixel coordinates, (fx, fy) and (cx, cy) are the focal length and
principal point respectively, (R3×3|t1×3) represent the trans-
lation and rotation of the camera (which we are calculating
from solvePnP), and (X,Y, Z) are the world coordinates of
the window frame.

Fig. 2. Inference1

This gives us the pose of the window with respect to the
drone.

D. Navigation and Control Stack
Initially for the planner, RRT Star algorithm was used

to find the path between the points. Since, the test track
has no other obstacles other than the windows, it was
computationally economical to find intermediate points
between the start location (0, 0, 0) of DJI Tello and the
approximate window locations. From the given map with
window locations, the approximate center coordinates
(X,Y, Z) are stored as goal coordinates and as the DJI
Tello navigates to the goal location, it’s current location was
updated. Additionally, intermediate points are considered
when the distance between the points is greater than 100 in
X or Y or Z direction.

For the DJI Tello to move towards the window locations,
it is instructed to move towards the window with slight
adjustments with offset of 200 in the direction of y and 15

in x direction to capture the images of the window. With
the built perception stack, the 3D pose of the window is
calculated with respect to the drone. From the results, the
centroid was calculated using the average of the obtained
corner points. The calculated points were in camera frame
and are translated from the camera frame to the drone
frame. Since the DJI Tello takes incremental coordinates,
the centroid points are directly fed and are given with an
offset of +10 in the Y direction for it to pass through the point.

Additionally, a simple code for using odometry in our
navigation stack is also written for obtaining the position of
the drone in the map coordinates. This helps to navigate to
the approximate coordinates of the next window and pass
through it.

III. TESTING

The navigation stack integrated with the built perception
stack was tested on the real environment consisting of three
windows as in Fig. 6 for the drone to fly through the windows
without any collision. The real-time detections by DJI Tello
while navigating through the windows are shown in the figures.

Fig. 3. Drone before passing through gate

Fig. 4. Drone after passing through gate



IV. REFERENCES

1 Principles of Robot Motion: Theory, Algorithms, and
Implementations” by Howie Choset, Kevin M. Lynch, et
al.

2 https://docs.px4.io/main/en/flight stack/controller diagrams.html
3 https://github.com/milesial/Pytorch-UNet
4 https://github.com/damiafuentes/DJITelloPy/tree/master/djitellopy
5 https://dl-cdn.ryzerobotics.com/downloads/Tello/Tello

SDK 2.0 User Guide.pdf
6 https://www.deeplearningbook.org/


	Environment
	Implementation
	Gate Detection
	Camera Calibration
	3D Pose Estimation
	Navigation and Control Stack

	Testing
	References

