P3A: Mini1 Drone Race

Dushyant Patil
Department of Robotics Engineering
Worcester Polytechnic Institute
Worcester, United States of America
dpatill @wpi.edu

Abstract—This project presents an approach to build a per-
ception stack for DJI Tello drone for flying through objects of
known shape and size. We use semantic segmentation to detect a
window to pass through. We use DJI Tello’s camera with Jetson
Nano Orin for real time inference of window in field of view and
estimates its position in Tello frame of reference. We have also
listed our findings as a quick start guide for using pDJI Tello
Edu drone for pose estimation of simplistic target objects.

I. PROBLEM STATEMENT

The aim of this project is to estimate pose of a window of
known shape and size. For this we will be using the semantic
segmentation followed by a set of post-processing algorithm to
get an estimate of window pose in drone frame. The estimated
pose will later be used to fly the drone through the window.

II. WORLD MAP

The data provided to us was the text format which consists
of information about boundaries of *world’ and approximate
pose of windows.

This defined as
Tmin Ymin Zmin Tmax Ymazx Zm.am]
where, Tiin, Ymin, 2min defines the lower left point &
Tmazs Ymazs Zmaz defines the upper right point of the
rectangular environment.
2) window: This parameter is defined as:
xz Yy z Tdelta Ydelta Zdelta
quw qr qy qz Xdelta Ydelta

1) boundary: parameter is

Zdelta

where, X y z represents the approximate center of
the window in meters. qw gx qy qz represents the
approximate orientation of the window as a quaternion.
While the remaining parameters are variances in the
pose in a Gaussian distribution.
We load this data in blender as cube objects using
primitive_cube_add function of bpy module. The Wash-
burn laboratory has exactly same setup which replicated the
map file given.

ITI. DATA GENERATION
A. Synthetic Dataset Creation

To train the segmentation mask, we created a synthetic
dataset using blender rendering capabilities. We moved the
position of camera randomly in a set of parallelopiped such
that we could cover different possible camera/ drone configu-
rations. In blender, we applied the constraint on the camera so

- The Perception Saga!

Keshubh Sharma
Department of Robotics Engineering
Worcester Polytechnic Institute
Worcester, United States of America
kssharma@wpi.edu

that is is centered towards a target point (A point close to the
window center of one of the 3 windows). We also varied the
position of light in 6 configurations to impose different lighting
conditions. We followed the steps given by Professor Nitin
about setting the blender environment so that we get different
segmentation masks using different pass indices and different
compositing. By combining all above mentioned steps, we
generated about 2500 images with segmentation masks. The
image below shows a basic example of single window mask
creation with different occlusions.

-

Fig. 1: RGB Images with segmentation masks

B. Sim2Real Transfer

To account for simulation to real life transfer for UNet
predictions, we added the washburn laboratory background
to out blender environment in material properties of different
background cubes. Fig [2] shows the example of such render-
ings.

C. Use of Homography on Single Windows

To expedite the speed of dataset generation, we applied
known homography to the corners of the window and applied
similar homography transformation to its mask. We also
embedded this transformed window mask pair with different
background images. All above steps amount to around 5K
images of resolution 720x960.

IV. SEMANTIC/ INSTANCE SEGMENTATION USING DL

Deep learning is effective for segmentation due to its
ability to automatically learn intricate patterns and features

o
i A

Fig. 2: RGB Images with segmentation masks and Washburn
lab background

Fig. 3: RGB Images with applied homography and different
backgrounds

from data. Convolutional Neural Networks (CNNs) excel at
capturing spatial dependencies in images, making them ideal
for tasks like object or image segmentation, where precise
localization and intricate detail extraction are crucial.

For our project we decided to use Unet which is a deep
learning architecture commonly used for image segmentation
tasks, particularly in medical image analysis and computer
vision.The network consists of an encoder and a decoder.
The encoder captures features from the input image through
convolutional layers, reducing spatial dimensions. The
decoder then upscales and refines these features to generate
pixel-wise segmentation masks. Notably, UNet employs
skip connections, which connect corresponding layers in the
encoder and decoder. This helps in preserving fine details
during the upsampling process, enhancing segmentation
accuracy.

For our implementation, as shown in Fig. @ we take
the input image as 512x512 with 3 channels (Red, Green,
Blue) and pass it through a double convolution layer that
keeps the same dimension but increases the channels to 64.
We then perform max pooling to reduce the size to half.
This combination of double convolution and max pooling

s 1=
1
—
—_——
W
[
[
1

2 KUG
1
3128 |

2
==

—————— # conv 3 X3, Rel.l”

|
=

copy
cony 1% 1

Fig. 4: Unet Architecture

is repeated 4 more times which leads to encoded tensor of
size 32x32 with 1024 channels. After this we de-convolute
this tensor which increases the size to 64x64 and reduces the
channels to 512. We then copy the previous encoded tensor of
matching size and concatenate it to the de-convoluted tensor
and then pass it through a double convolution. We repeat
this de-convolution, concatenation & double convolution 4
more times to regain the original dimension of 512x512
with 64 channels. We then pass this tensor through a fully
connected layer to reduce the number of channels to 1
to get the segmentation mask.// The described model was
trained on the previously described simulated dataset for 900
epochs with a learning rate of 0.0003 to achieve desired
robustness and reliability. This trained model is then used to
perform inference using the Jetson Orin Nano on the images
captured by the DJI Tello Edu Quad-rotor.// Fig. [5] shows
the captured frame from DJI Tello and Fig. [shows the
segmentation mask on the captured image. We can observe
that our implementation gives proper segmentation mask even
if multiple windows are present.

s mm @®WPI 4

Fig. 5: Captured frame from DIJI Tello

Fig. 6: Inference from trained Unet model

V. CORNER DETECTION

Using the UNet inferred masks, we estimate closest window
and its corners. Using these corners, we estimate the pose of
the window with respect to the Tello camera.

A. Closest window estimation

We used largest area criteria to estimate closest window
among the predicted masks. We used contour detection with
the help of opencv function cv2.findContours. We sorted these
contours in the ascending order of area occupied by contours
in pixels. We use the last contour as our closest window. As
these contours are not perfect rectangles or squares, we apply
further post processing to estimate corners of windows. We
tried two different approaches which gave us certain accuracy
at certain estimation speed. Below image show the inference
and largest area detection using this method:

Fig. 7: RGB Images with applied homography and different
backgrounds

Fig. 8: Inference with closest window estimation

B. Delaunay Triangulation Based Estimation

To approximate the exact corners of the closest window, we
apply erosion-dilation on the predicte mask followed by Canny
edge detector. On the Canny edges, we apply probabilistic
Hough transforms to get set of lines. We find intersection of
all lines making an angle of 45 degrees or more with each
other. Through all the intersection points, we apply Delaunay
triangulation. On these Delaunay triangles, we find edges
which are part of only one triangle. These edges represent
outer edges of the estimated window shape. Using the points
on these outer edges, we approximately fit a quadrilateral and
the corners of these corners give us the corners of window
which are pretty accurate. But this method takes a lot of time
(around 1 s per frame). Thus we tried an alternative which
would give similar accuracy in less time. Below images []
show this algorithm which shows all the intermediate result
of image processing:

Fig. 9: Delaunay Triangulation pipeline

C. Rectangle Fitting

On the closest estimated window, we apply dilation-erosion.
On this image, we approximate a convex hull. On this convex
hull, we find the maximum and minimum x and y coordinates.
Using these coordinates, we fir a rectangle covering enclosing
the predicted mask. On the edges of the rectangle we try to
find the points which are closest to the vertices but lie withing
the white region of our predicted mask. This gives a good
estimation of corners of the window. This method gives us
real time corner detection with good accuracy. Below images
[??] show the rectangle fitting pipeline to get bounding box of
closest window:

VI. CAMERA CALIBRATION

To perform pose or depth estimation, we need to determine
the instrinsic parameters of the camera of the Tello drone. We
use a checkerboard of size 10x7 where each square was of
size 23 mm to perform the calibration. As the image quality
changes significantly depending on whether you are recording
a video or taking still photographs. As we need to perform
inference on frames captured during the flight, we performed
calibration on images recorded during a video recording.
We selected 22 frames from the video such that the image
sharpness was good enough and the camera angles varied a
lot. We used the Matlab CameraCalibrate tool to get intrinsic
parameters of the camera. We used a self implemented code

]
@WPlL W

I
i

1
|
i

"®ah

e

Fig. 11: ”"Reprojecting the Window center in drone camera
frame

of Zhang’s calibration (From CV Fall22 course) to check if
the matlab camera matrix and our code’s camera matrix gave
similar parameters. We found that to be the case and our
camera matrix was as follows:

911.4 0 467.4

K= 0 911.2 357.3
0 0 1

Distortion Coefficients = [0.0011, -0.031, 0, 0, 0]. We use
these parameters to estimate window pose in camera frame.

VII. POSE ESTIMATION

We use Perspective N-Points method to estimate the pose
of the window. We use cv2.solvepnp function to estimate the
pose of closest window in camera frame. We reproject the
coordinate frame on the image as shown in image [TT] below:

REFERENCES

[11 A Quaternion-based Unscented Kalman Filter for Orientation Tracking

[2] Class Notes by Prof. Nitin Sanket

[3] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
Networks for Biomedical Image Segmentation,” 2015. Available:
https://arxiv.org/pdf/1505.04597.pdf

[4] “Unet from Scratch —— Unet Tutorial —— Developers hutt,”
www.youtube.com.

[5] “Implementing original
www.youtube.com.

[6] “PyTorch Image Segmentation Tutorial with U-NET: everything from
scratch baby,” www.youtube.com.

U-Net from scratch using PyTorch,”

	Problem Statement
	World map
	Data Generation
	Synthetic Dataset Creation
	Sim2Real Transfer
	Use of Homography on Single Windows

	Semantic/ Instance Segmentation using DL
	Corner Detection
	Closest window estimation
	Delaunay Triangulation Based Estimation
	Rectangle Fitting

	Camera Calibration
	Pose Estimation
	References

