Team Apache Stealth:

Mini Drone Race -

Ankit Mittal
Department of Robotics Engineering
Worcester Polytechnic Institute
Email: amittal @wpi.edu

Abstract—This project targets the creation of a deep
learning-based perception stack for a quadrotor to
navigate through artificially designed windows, a chal-
lenge inspired by Lockheed Martin’s AlphaPilot com-
petition. The perception stack uses a neural network
for real-time detection and segmentation of windows
at various angles and light conditions. The network is
trained on a dataset created in Blender, which ensures
the model accurately represents the windows’ visual
features. The stack includes an algorithm to select
the nearest window and a 3D pose estimation process
utilizing Perspective-n-Point methods, improved by
detailed camera calibration. When implemented on
a DJI Tello drone, the system effectively estimates
the window pose in real-time, which is essential for
autonomous navigation. This project contributes to
the field of autonomous drone racing, showcasing the
application of machine learning and computer vision
in dynamic and challenging environments.

I. INTRODUCTION

This project aims to develop a perception stack
for a quadrotor drone to autonomously navigate
through windows, a task inspired by the conditions
of the AlphaPilot competition. The initial step in-
volves detailing the hardware specifications, focus-
ing on the type of image data retrieved from the
drone’s camera and the methods used to interface
with the drone via the DJITellopy APL

Within the Perception Stack, the project features
a Window Detector that uses a U-net neural net-
work architecture trained on a dataset created in
Blender, followed by a corner detection and filtering
process to identify the most accessible window
for navigation. The network’s training process is
comprehensive, with a division of data into training,

Perception Sagal!

Rutwik Kulkarni
Department of Robotics Engineering
Worcester Polytechnic Institute
Email: rkulkarnil @wpi.edu

validation, and test sets and the use of a Dice score
metric for performance evaluation.

The final steps include camera calibration to ad-
dress lens distortion and the use of the Perspective-
n-Point method in the OpenCV library for pose es-
timation. These components are tested to verify the
drone’s ability to accurately estimate window poses
in real-time, with results demonstrating the practical
application of the perception stack for drone naviga-
tion. The introduction provides a summary of each
section, highlighting the use of machine learning
and computer vision to enable autonomous drone
flight through a controlled environment.

Link To Videos: |Click Here

II. TEST WINDOW SETUP

The testing framework comprises three distinct
window configurations to assess the drone’s navi-
gation system:

1) Test Case 1: A window angled relative
to the drone’s approach path, introducing a
more complex test case for the drone’s three-
dimensional pose estimation capabilities.

2) Test Case 2: A window that is partially
obscured from the drone’s view, challenging
the detection and segmentation algorithm to
maintain performance despite incomplete vi-
sual information.


https://drive.google.com/file/d/1uUSNmdUd-ZiGVLv2rp2mNiRtt8BZpXFu/view?usp=drive_link

L T Fia N

Fig. 1: Test Case 1- Tilted Window

Fig. 2: Test Case 2- Occluded Window

III. WINDOW DETECTION USING DEEP NEURAL
NETWORK

A. Data Generation (sim2real)

For the training of deep learning models, a sub-
stantial and diverse dataset is essential. Generating
such datasets from real-world scenarios is typi-
cally resource-intensive. To mitigate this, we utilize
Blender for synthetic dataset creation, offering a
cost-effective and scalable solution.

The dataset consists of 6000 images, with each
image dimension being (480x360). Data augmen-
tation techniques were applied to ensure the dataset
captures a wide range of environmental conditions.

Mask images corresponding to each window scene
were also produced in Blender. These masks are
critical for the segmentation algorithm’s training,
providing a benchmark for accuracy. This approach
of generating window images alongside their masks
equips the perception system to generalize effec-
tively in various settings.

Fig. 3: Simulated Environment in Blender

Fig. 4: Corresponding Label Image of the of the
Simulated Environment

B. DNN for Segmentation : U-NET

The U-Net architecture is structured as an
encoder-decoder network with a characteristic ”U”
shape, which is where it gets its name. It consists of
a contracting path (encoder) to capture context and
a symmetric expanding path (decoder) that enables
precise localization.

1) Model Architecture: The U-Net
architecture processes images in the format
[batch_size, channels, height, width]. The
architecture encodes an input image ([2, 3,



360, 480]) through four successive down-
convolution blocks, reducing spatial dimensions
while increasing feature channels from 64 to 512.
Max pooling is applied between encoder blocks to
downsample the image. The encoder’s last block
outputs a feature map of [2, 512, 23, 30], which
is then passed through a latent layer ([2, 1024,
23, 30]) that serves as a bottleneck capturing the
image’s most abstract representation.

Input: 3D image

' Iﬂ summation (skip connection)

Output: 3D probability
maps for each class

u =P Concat
Conv + Relu
- W Max pool
o @ ﬁ 1 Uncom
path ¥ synthesis path

(encoder) (decoder)

Fig. 5: U-NET Architecture

The decoder reverses the process with up-
convolutions, halving the channels and doubling the
dimensions at each stage, utilizing skip connections
from the corresponding encoder outputs to preserve
detail. The final decoder output is [2, 64, 368,
480], which is slightly larger than the original due
to (0,0,4,4) padding applied to match the input’s
spatial dimensions post-processing. The network
concludes with an output layer that uses a 1x1 con-
volution to generate a single-channel segmentation
map of the same resolution as the padded input ([2,
1, 368, 480]).

2) Training, Loss Function, and Optimization.:
The U-Net model is trained using the dataset of
simulation images from Blender, divided into train-
ing, validation, and test sets, with distribution being
94 percent, 3 percent, and 3 percent respectively
out of a total dataset size of 6000 images. The
network is implemented in PyTorch and is set up to
train on a GPU if available. It employs the above-
described U-net architecture. Training is driven by
the BCEWithLogitsLoss function, suitable for bi-
nary classification, and uses the Adam optimizer
with a learning rate of 0.0001 and weight decay
regularization set at 0.00001. Model parameters are

iteratively updated through backpropagation during
training epochs, with performance assessed on the
validation set after each epoch and final model
generalization tested on the test set post-training.

C. Evaluation (Results from DNN)

In evaluating our deep neural network, the Dice
score is employed as the primary metric due to
its suitability for segmentation tasks, measuring the
overlap between predicted segmentation and ground
truth annotations. It ranges from 0, indicating no
overlap, to 1, denoting perfect agreement. For our
test set, we utilize genuine drone-captured images to
ensure realistic assessment conditions. The network
has achieved an impressive Dice score of 0.915 for a
single image, indicating high accuracy in segmen-
tation. Moreover, when considering all images in
the test set, the network maintains a high level of
performance, with an average Dice score of 0.8,
reaffirming its reliability in processing real-world
data.

Fig. 6: Image going into the Network



Fig. 7: Image coming out of the Network

IV. POST-PROCESSING AND POSE ESTIMATION
A. Corner Detection

This section delves into a detailed examination of
an advanced image processing method developed
for the precise detection of corners within digital
images, with a particular focus on identifying the
corners of windows. Initially, the process entails a
pre-processing phase, where the image is enhanced
to optimize quality, thereby facilitating more ac-
curate analysis in subsequent steps. The core of
the detection technique employs the findContours
algorithm from the OpenCV library, which is adept
at detecting all significant patches within the image.
The algorithm proceeds to compute the centroid of
each detected patch, which serves as a provisional
location of the window corners.

Given the prevalence of noise in the binary
mask image, the method incorporates a crucial non-
maximum suppression step. This step is pivotal
as it selectively filters out less prominent features,
effectively discarding false positives that lack the
strong intensity variations typically associated with
genuine corner points. By doing so, the technique
ensures that only the most salient corners—those
with a pronounced intensity gradient and geomet-
rical alignment with the window structure—are
retained for further analysis.

To identify the nearest window from an image,
our image processing system employs the findCon-
tours function of OpenCV on a pre-processed binary

mask to detect contours, which signify potential
windows. By calculating the area of these contours
and identifying the largest one through the contour
area function, we assume the largest contour to
represent the closest window due to the perspective
correlation between size and distance. This contour
is then segmented, focusing our analysis on the
most proximate window for detailed feature anal-
ysis or further computer vision tasks. While the
initial method for identifying the nearest window
relies on the contour area, a more sophisticated
approach could utilize re-projection error, given
that the approximate real-world coordinates of the
windows are known. However, this method proved
challenging due to the drone’s imprecise odometry
and slight physical deviations in the camera’s angle,
which led to inconsistencies in the results that did
not align with the expected outcomes.

when only three corners are visible, we used the
geometric properties of parallelograms estimating
the position of the fourth corner of a window. The
concept is based on the fact that in a parallelogram,
the sum of the vectors of adjacent sides equals the
vector of the opposite side.

B. Pose Estimation

Using the known dimensions of the window,
we established world coordinates at the window’s
center and extracted the corresponding image points
from the captured image via a neural network.
These image points represent the corners of the win-
dow in the image. We then applied a perspective-
n-points (PnP) algorithm to estimate the window’s
pose by aligning the world points with the image
points, effectively determining the window’s posi-
tion and orientation relative to the camera. This
method, while sophisticated, faced challenges due
to inaccuracies in the drone’s odometry and slight
camera tilts, leading to re-projection errors. We
refined the process by enhancing camera calibration
and error correction to improve the pose estimation

V. RESULTS

Below is the link to a live demonstration show-
casing the capabilities of our perception stack in
action. LIVE DEMO!!


https://drive.google.com/file/d/1uUSNmdUd-ZiGVLv2rp2mNiRtt8BZpXFu/view?usp=drive_link

A. Test Image 1 B. Test Image 2

Tl A i o

Fig. 8: Raw Image of the Tilted window Fig. 11: Raw Image of the Occluded Window

Fig. 9: Output from the DNN

Fig. 13: Output after Pose Estimation

; ¥
Ak

Fig. 10:



VI. OBSERVATIONS

o In the context of pose estimation using
Perspective-n-Point, accuracy is contingent
upon the complete visibility of the window
within the field of view of the drone camera.
Field tests reveal a limitation where the drone
captures only the lower half of the window
when positioned centrally and at a consistent
distance, resulting in a tilted image.

« Furthermore, to improve pose estimation accu-
racy, it is suggested to incorporate reprojection
error calculations from drone odometry. This
step is expected to enhance the robustness of
pose estimation during the drone’s maneuver-
ing phases.

VII. CONCLUSION

In conclusion, the project has integrated a deep
learning perception system into a drone, allowing
it to autonomously navigate through windows. The
U-Net neural network, trained on a dataset created
with Blender, was effective for real-time window
detection and segmentation. The system’s accuracy
was confirmed through camera calibration and the
use of Perspective-n-Point methods for 3D pose
estimation. Tests in controlled environments showed
the system to be accurate, as indicated by the
Dice score metrics. These results suggest that the
system could be used in real-world autonomous
drone applications and provide a basis for further
research in this area.

VIII. ACKNOWLEDGMENT

The author would like to thank Prof. Nitin Sanket
and the TA of this course RBES95.

REFERENCES

[1] DiITelloPy Link
[2] U-Net: Convolutional Networks for Biomedical Image Seg-
mentation Link


https://github.com/damiafuentes/DJITelloPy
https://arxiv.org/abs/1505.04597

	Introduction
	Test Window Setup
	Window Detection using Deep Neural Network
	Data Generation (sim2real)
	DNN for Segmentation : U-NET
	Model Architecture
	Training, Loss Function, and Optimization.

	Evaluation (Results from DNN)

	Post-processing and Pose Estimation
	Corner Detection
	Pose Estimation

	Results
	Test Image 1
	Test Image 2

	Observations
	Conclusion
	Acknowledgment
	References

