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Abstract—This project aims to develop an autonomy stack
to navigate through multiple windows inspired by the Alpha
Pilot competition. The first phase of the project deals with the
development of a robust Perception stack which has been trained
using only simulation data and the second phase of this project
deals with implementing the Controls, Planning, and hardware
integration of our algorithm with the DJI TelloEDU drone.

I. ENVIRONMENT

The map consists of multiple gates placed at 3D poses
known apriori from the environment file. The window loca-
tions are given in the format:

# boundary xmin ymin zmin xmax ymax zmax

# window x y z xdelta ydelta zdelta

gw gx gy gz xangdelta yangdelta zangdelta
boundary 0 0 0 45 35 6

window 1 1 1 0.2 0.2 0.2 0.52 0.85 0 0 5 5

e x, Yy, z represents the approximate center of the window
in meters.

e xdelta, ydelta, zdelta represents the variation in meters
that is possible from z, y, z values.

e quw, qr, qy, qz represents the approximate orientation of
the window as a quaternion.

o zangdelta, yangdelta, zangdelta represents the ZYX
Euler angle variation in degrees that is possible from the
approximate orientation given.

II. PERCEPTION STACK

The first phase of this project dealt with the development of
a robust Perception stack for detecting or segmenting windows
in an unknown environment. For this, we decided to train a
custom Instance segmentation model using YOLOVS.
Since the windows in the environment have different poses in
the world, a simple object detection network would not have
been able to provide us with accurate results. Additionally,
the bounding boxes generated by such a network do not take
into account the orientation of the windows or sometimes
have overlaps when multiple windows are present in the same
frame. Using instance segmentation, we were accurately able
to detect the windows and generate segmentation masks for
each window.
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Fig. 1. Multiple gates used for dataset generation

A. Dataset Generation Using Blender

Having a good and unbiased dataset is key for obtaining
great results with a deep neural network. To make this task
more complicated, we only had access to simulated data.
We created our dataset using only rendered images from
Blender. Blender is a free and open-source 3D computer
graphics software toolset. The images consisted of multiple
windows spawned in random orientations. We also changed
the camera pose and lighting conditions in each image to
add more randomness to our dataset. Our original dataset
consisted of 5000 images created using Blender. Since our
dataset only consisted of simulation data, there may have
been some intrinsic bias. To address this problem, we used
two approaches:

1) 3D Gaussian Splatting: The first approach to solving
the problem of intrinsic biases in popular literature is



Fig. 2. Gate

to use hyper-realistic simulated data. To this extent, we
made use of Gaussian Splatting to recreate a 3D color
point cloud of the actual environment and imported
it into Blender. We spawned our window frames on
this background and We used this GitHub repository to
perform this task: ’Gaussian-Splatting-Windows’. While
this approach worked very well for our test case, it could
not be generalized across other backgrounds. So, we
decided to proceed with the second approach as it made
our network more robust.

2) Domain Randomization: Domain randomization is a
technique for transferring Deep Neural Networks from
Simulation to the Real World and helps us bridge the gap
between simulation and reality. We took images from the
FlyingChairs dataset and used them as backgrounds for
our rendered images. Thus, we expanded our original
dataset of 5000 images to 10000 images by adding new
backgrounds to them.

B. Transformations and Augmentations

We used transformations and augmentations to expand our
dataset from 10000 images to 24000 images:

1) Auto-orientation

2) Grayscale

3) Brightness: Between -30
4) Blur: Up to 2.5px

5) Noise: Up to 10

6) Cutout: 15 boxes with 5

Fig. 3. GAUSSIAN SPLAT OF ENVIRONMENT

C. Instance Segmentation Using YOLOVS

We used the Roboflow API and Ultralytics YOLOVS to train
our custom model for window segmentation. YOLOVS is a
state-of-the-art object detection and image segmentation model
created by Ultralytics in January 2023 and using the PyTorch
framework. We trained our instance segmentation model using
the pre-trained weights from the YOLOv8n-seg. YOLOv8n-
seg is the lightest YOLOv8 model, has the fastest inference
time, and was trained on the COCO dataset. The model was
trained for 100 epochs

Dataset Division:

¢ Train Set: 21000 images
o Test Set: 1000 images
« Validation Set: 2000 images

We trained multiple models with different outputs and this
helped us gauge what works best for our task. We started by
training the model with just the four corners of the window as
an input. While this model was good, the segmentation masks
were not reliable in some cases where there was overlap or
orientation changes.

The next model we trained only had the 4 corners of the
window with the checkerboard pattern as the ground truth.
This model was extremely accurate and robust. However,
predicting which four corners belonged to the same window
proved to be difficult. So, we changed our model again.

Our final model combined the previous two approaches and
predicted the segmentation masks of two classes — the entire
window and the four corners. This helped us develop a robust


https://github.com/jonstephens85/gaussian-splatting-Windows.git

Fig. 4. Dataset with background image

Fig. 5. Augmented training image

model which was able to predict the window masks accurately.
Extracting the window and corner masks with some post-
processing was a lot easier this way too. the next section talks
about the post-processing techniques we used.

Fig. 7. Corners obtained after post-processing

D. Post-Processing Techniques

In our post-processing section, we are fitting a circle to
each segment in order to determine which corners belong to
which gate. After getting circles on each segment, we allot
each corner to gate based on ratio of the distance of the center
of the corner centre to the gate centre and the radius of the gate
circle. If this ratio is between 0.6-0.8, this corner is assigned
to that gate. This process is repeated for all the corners and
gates.

E. Camera Calibration

Camera Calibration was done with the help of MATLAB
and a checkerboard pattern to correct the distortions in the
images captured by the DJI Tello EDU drone and predict the
camera intrinsics.

FE PnP

Pnp (Perspective-n-Point) is the algorithm used to estimate
the pose of the closest window with respect to the camera
frame. We use the cv2.solvePnP() function in which the inputs
are image co-ordinates of the corners of the closest window
from top-left corner in anti-clockwise manner, the 3D world
frame co-ordinates of the corresponding window corners in
the same order, the intrinsic camera matrix of the camera on



the Tello obtained from calibration process and the distortion
co-efficients(assumed to be zero in our case). The output is
the pose of the world frame with respect to the camera frame.
This pose estimation can now be used to fly the drone past
the window.

III. DEPLOYMENT ON DJI TELLO

The perception stack developed in P3a is now deployed on
the drone to make it pass through multiple windows. The basic
heirarchy of our process is shown below:

Start

Fly to approximate gate location

Use PnP to calculate pose and center itself according tg the gate

Pass through the gate

All gates passed?

Yes

Stop

IV. RESULT

Video Submission Link

V. CONCLUSION

The perception stack is really robust to noise in the input
image and the corner calculations are really good. The drone
is successful at crossing the gate. The only problem we faced
as a team was to fly the drone accurately in every run. This
is a problem we acknowledge and we will try to fix it in the
next run.
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