
Mini Drone Race - Perception Saga
Ankush Singh Bhardwaj

abhardwaj@wpi.edu
Sri Lakshmi Hasitha Bachimanchi

sbachimanchi@wpi.edu
Anuj Pradeep Pai Raikar

apairaikar@wpi.edu

Abstract—The project presents the perception stack for the
autonomous navigation of a DJI Tello Edu drone through an
approximately known environment. The project is inspired from
Lockheed Martin’s AlphaPilot competition where, the on board
localization and perception stack works fast in real time for
the drone to navigate through multiple windows in the order of
their appearance. Neural Network based approaches work best
to train the model to identify and segment the windows. To this
end, custom datasets in a Blender simulated environment were
curated and used to train our network to better predict the
windows under various conditions of lighting and occlusions.
The goal for this module is to detect robust window/corner
segmentations in real life. The ultimate goal of the project is
to navigate drone through these windows without any stray
contact with any surfaces or boundaries in real life.

I. ENVIRONMENT

The test track consists of 3 windows, which shall now be
referred to more appropriately as ”Gates”. They are placed at
different locations and orientations, all of which are known ap-
proximately in the track map co-ordinate frame. The window
is given to be a rectangular board with peculiar features on
it including the WPI and PeAR group logos and the checker-
board pattern on the corners. Additionally, a sample format of
the window is given in a map format with appropriate center
location and orientation and its possible variation from the
center location and orientation. The window is given as shown
in Fig. 1. This map is used to store the window coordinates
for navigation of drone through the window without colliding
with the external window boundaries.

II. IMPLEMENTATION

We decided our approach to be the application of classical
computer vision methods over the segmentation masks of
the gates obtained using U-Net-based Semantic Segmentation
to approximate the pose and the centroid of the gate in 3D
coordinates. The following subsections will provide more
detail.

A. Semantic Segmentation
1) Neural Network: We decided to use a PyTorch based

U-Net with custom dataloaders to obtain the binary masks of
the gates. The feature chosen was the unique checkerboard
pattern at the corners of the window. Since our task is highly
specialized, we decided to train the network from scratch
over the WPI Turing clusters in various hyperparameter

Fig. 1. Window

configurations. Robust mask detection for the gates nulifies
the need to filter multiple detections.

2) Images Dataset Generation: Data for training the
network was generated in blender. The windows are spawned
in the 3D blender environment. We considered a multitude
of scenarios of varying camera angles, lighting conditions,
occclusions and number of windows. Augmentations were
performed by varying the position of the camera and we
employed alpha matting to add as the backdrop; photos of
the test environment in the laboratory to make the detections
robust to any kind of background.

In our first try the dataset was created without the usage
of any background. After running the inference over the
image captured from the drone from the real environment,
along with performing segmentation of the window in view,
the model segmented background environment features such
as the safety net and the floor tiles. Hence more datasets
were created by composting the initially captured images
with different background images with textures involving
rectangles, flying net and some random backgrounds.



Fig. 2. Sample Image from the Dataset

However, when blending the custom background images
with the first set of the plain blender generated window
images, visibility of the window images was compromised.
This gave poor inference over blended images. Hence,
backgrounds were added as 3D objects to the existing scene
of three windows and large datasets were created using
various camera poses and lighting. The total size of the
dataset is 6K images.

Fig. 3. U-Net Structure

3) Masks Dataset Creation: While capturing images of
the scene from blender, a JSON file is created which stores
the 2D pixel coordinates of the corners of the window by
mapping from the 3D coordinates. The pixel coordinates from
the JSON file are used for creating masks of the windows
to be used for training the model. Based on the vertex
coordinates, the mask is generated by filling the outer and
inner polygons with white and black colors respectively. The
generated binary masks are used as a ground truth data for
training and evaluating the model. The masks provide the
model, a labelled information about the window object to be

segmented from the image. The raw images generated from
Dataset Generation and these masks are used to better train
the model to predict accurate segmentation.

Fig. 4. Mask obtained on a random image after less training

B. Camera Calibration
The camera calibration matrix with focal lengths, principal

point and distortion parameters. The camera of the DJI
Tello Edu was calibrated by printing a checkerboard and
utilizing Matlab’s Calibration toolbox. With the toolbox,
the corner points of the checkboard are estimated on a set
of checkerboard images captured with DJI Tello with 3D
coordinates of the calibration corner pattern in the world
frame. With the help of the toolbox, the estimated parameters
are used to back project the world points onto the images and
are compared with the observed image points for validation.
The intrinsic and extrinsic parameters of the DJI Tello Edu
after calibration are as follows.

Parameter Value
Focal Length

[
1.8229× 103 1.8210× 103

]
Principal Point

[
1.2936× 103 968.5153

]
Image Size

[
1936 2592

]
Radial Distortion

[
0.0290 0.0641

]
Tangential Distortion

[
0 0

]
Skew 0

Matrix K

1.8229× 103 0 1.2936× 103

0 1.8210× 103 968.5153
0 0 1


The validation showing the projected points and observed

points is shown in figure Fig 5.

C. Corner Detection
After obtaining the masks of the windows on the track,

classical CV approaches were used to determine the corners
of the window. Since the neural network is trained to detect
and segment windows, the cv2.findcontour is performed. The



Fig. 5. Camera Calibration

largest counter is supposed to be that of the largest window.
The contours may not be perfectly segmented and not provide
proper window corners, to solve this we added bounding box
to our largest contour. This provided us with better results.
The pixel values of the four corners of our box provided us
with the approximate four pixel coordinates in the picture.

D. 3D Pose Estimation

The 3D pose of the window was calculated using the
cv2.solvepnp function. The camera Calibration had provided
us with the K matrix for the camera, The world coordinate
frame is assumed to be at the bottom left part of the win-
dow.Since the width and height of the window are known,
and the thickness is negligible the world coordinates of the
window corner point can be obtained. The pixel coordinates of
the corners are known by applying classical cv approaches as
described above. PnP requires 3 points to solve and minimum
of 4 to get a unique solution.uv

1

 =

fx 0 cx
0 fy cy
0 0 1

 r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3



X
Y
Z
1


The above formula solves for the pose of the window with

respect to the camera frame. In the formula (u, v) indicate the
pixel coordinates, (fx, fy) and (cx, cy) are the focal length and
principal point respectively, (R3×3|t1×3) represent the trans-
lation and rotation of the camera (which we are calculating
from solvePnP), and (X,Y, Z) are the world coordinates of
the window frame.

This gives us the pose of the window with respect to the
drone.

III. TESTING

The designed perception stack was tested on the real en-
vironment consisting of three windows as in Fig. 6. The
individual images of window were captured with the camera of
DJI Tello Edu and inference was run on these images. Images
were captured varying the pose, lighting, color, occlusion and
backgrounds. The real-time detections are as shown in figures.

Fig. 6. Test Track with 3 Windows

Fig. 7. Inference1

Fig. 8. Inference2

IV. REFERENCES

1 Principles of Robot Motion: Theory, Algorithms, and
Implementations” by Howie Choset, Kevin M. Lynch, et
al.

2 https://docs.px4.io/main/en/flight stack/controller diagrams.html
3 https://github.com/milesial/Pytorch-UNet
4 https://github.com/damiafuentes/DJITelloPy/tree/master/djitellopy



Fig. 9. Inference2

5 https://dl-cdn.ryzerobotics.com/downloads/Tello/Tello
SDK 2.0 User Guide.pdf

6 https://www.deeplearningbook.org/


	Environment
	Implementation
	Semantic Segmentation
	Neural Network
	Images Dataset Generation
	Masks Dataset Creation

	Camera Calibration
	Corner Detection
	3D Pose Estimation

	Testing
	References

