
P2B: Flying Through the Real Trees!
Dushyant Patil

Department of Robotics Engineering
Worcester Polytechnic Institute

Worcester, United States of America
dpatil1@wpi.edu

Keshubh Sharma
Department of Robotics Engineering

Worcester Polytechnic Institute
Worcester, United States of America

kssharma@wpi.edu

Abstract—This project presents an approach for drone nav-
igation over a known map. We use RRT* algorithm to find
obstacle avoiding path between start and goal. We use DJITellopy
library functions to physically move thr DJI Tello drone over the
generated path. We have also listed our findings as a quick start
guide for using position control on a DJI Tello Edu drone for
navigation on simplistic trajectories.

I. PROBLEM STATEMENT

The aim of this project is to execute actual navigation (and
motion planning) in a known forest. For this we will be using
the RRT* algorithm to get a strictly linear path. The estimated
path is then tracked by the drone with the help of a in-built
PID controller.

Fig. 1. Tello in trees

II. WORLD MAP

The data provided to us was the textformat which consists
of information about boundaries of ’world’ and boundaries of
obstacles.

1) boundary: This parameter is defined as[
xmin ymin zmin xmax ymax zmax

]
where, xmin, ymin, zmin defines the lower left point &
xmax, ymax, zmax defines the upper right point of the
rectangular environment.

2) block: This parameter is defined as[
xmin ymin zmin xmax ymax zmax r g b

]
where, xmin, ymin, zmin defines the lower left point,
xmax, ymax, zmax defines the upper right point & r, g, b
defines the color of the cuboidal block.

We load this data in blender as cube objects using
primitive_cube_add function of bpy module. The Wash-
burn laboratory has exactly same setup which replicated the
map file given:

Fig. 2. World map with obstacles

III. CONFIGURATION SPACE

To maintain a safe distance between drone and obstacles
during navigation, we inflate the size of obstacle by a certain
factor. In our case with map1, we increased the size of
obstacles by 10% (As shown in appendix). The DJI Tello
drone uses takeoff command to launch itself vertically at
an approximate distance of 1 m. Since the tello command
is unpredictable we also check the distance it is at just after
takeoff and adjust the height to ensure that quad-rotor is always
at 1m before it begins tracing the given waypoints. We use this
to our advantage for maintaining safety in navigation. To keep
a safe ground clearance so that the drone does not touch the
ground or top netting inside the lab, we bounded our Z values
between 1 m and 1.5 m

IV. RRT* PATH FINDING

Rapidly-exploring Random Trees Star (RRT*) is a path
planning algorithm used in robotics and AI. It iteratively
builds a tree of potential paths from a starting point to a
goal while minimizing the overall path cost. RRT* efficiently
explores the configuration space, incrementally improving
the generated paths by reconfiguring the tree structure and
selecting low-cost paths. For our application we sampled in
euclidean space and used the L2 norm for cost calculation



between sampled nodes. The nodes should be within 1.5 units
of distance between each other and we decided to ignore
all the obstacles that comes before the sampled points for
optimization of collision checking. The collision checking
algorithm utilizes intersection of line between the nodes with
all of the 6 faces of the cuboidal obstacle defined which is
faster than volumetric calculations.

The path which we found for above mentioned start and
goal positions are shown in figures 3, 4.

Fig. 3. RRT Path in blender

Fig. 4. RRT Path in blender

V. PHYSICAL IMPLEMENTATION

We implement all the path planning mentioned above on
NVIDIA Jetson Orin Nano and use it to fly the drone. We
faced some of the interesting problems while setting up both
DJI Tello and Jetson Nano.

• The DJI Tello takes commands via UDP calls but since it
works without handshake the commands gets lost in an
unpredictable manner. A workaround to this was using
the send_command_with_return function which
forces tello to return the final status of execution of the
sent command. This isn’t a perfect solution either but it
increases the reliability of the drone significantly.

• The logging on DJI Tello is imperfect as it returns
the velocities in each of the principle axes but in
decimeters/sec and also cuts off any floating point
precision from it meaning that small movements in any
direction aren’t logged in the Jetson Orin. This made
plotting the actual path traversed by the drone will
always have inaccuracies when using just the velocity.
The solution to this was using the acceleration in each
axes, which were given as float values, and use simple
newtonian physics (s = u.t+0.5.a.t2) to get vastly better
results.

VI. DATA LOGGING

We showcased during our live demo that we were able to
follwo the RRT* generated trajjectory pretty closely using our
DJI Tell0 with the help of go x y z speed command.
We logged the states data from DJI Tello drone during the
runtime on a parallel thread to ensure we’re getting the real
flight time data. Using the velocity and acceleration data,
we reconstructed the trajectory travelled by the drone. We
observed that we were able to get trajectory travelled by drone
which follows similar trend as that of the RRT paths as shown
below.

Fig. 5. RRT Path vs logged data

Fig. 6. RRT Path vs logged data

VII. CONCLUSION

After this experiment we are able to navigate a DJI Tello
quad-rotor in an known and unseen space using the path
generated from RRT* algorithm utilising just the on-board
IMU and a simple PID controller. The quad-rotor successfully
completed the flight without colliding with any obstacles or
boundries and land within acceptable range of the dedicated
landing point.

REFERENCES

[1] A Quaternion-based Unscented Kalman Filter for Orientation Tracking
[2] Class Notes by Prof. Nitin Sanket



VIII. APPENDIX

A. Obstacle Inflation for Configuration Space

Get boundaries for all obstacles from map files provided
For each obtsacle:
xlength = xmax− xmin
ylength = ymax− ymin
zlength = zmax− zmin
xmin = max(xminworld, (xmin− 0.1 ∗ xlength))
xmax = min(xmaxworld, (xmax+ 0.1 ∗ xlength))
ymin = max(yminworld, (ymin− 0.1 ∗ ylength))
ymax = min(ymaxworld, (ymax+ 0.1 ∗ ylength))
zmin = max(zminworld, (zmin− 0.1 ∗ zlength))
zmax = min(zmaxworld, (zmax+ 0.1 ∗ zlength))


	Problem Statement
	World map
	Configuration Space
	RRT* Path finding
	Physical Implementation
	Data logging
	Conclusion
	References
	Appendix
	Obstacle Inflation for Configuration Space


