
Fly through ”real” trees!
Team Nimbus Navigators

Chaitanya Sriram Gaddipati
Department of Robotics Engineering

Worcester Polytechnic Institute
Worcester, Massachusetss 01609

Email: cgaddipati@wpi.edu

Ankit Talele
Department of Robotics Engineering

Worcester Polytechnic Institute
Worcester, Massachusetss 01609

Email: amtalele@wpi.edu

Shiva Surya Lolla
Department of Robotics Engineering

Worcester Polytechnic Institute
Worcester, Massachusetss 01609

Email: slolla@wpi.edu

Abstract—In this project, we implement the navigation stack
we developed in project p2a on DJI Tello EDU quadcopter to
navigate from a start to goal position along the generated path
in a pre-mapped environment.

I. INTRODUCTION

Autonomous navigation using quadcopters demands robust
path planning to determine an optimal or near-optimal route,
effective trajectory planning to ensure smooth motion, and
dependable control to execute the planned motion accurately.
In this study, we present the execution of our comprehensive
pipeline for the autonomous navigation of quadcopters within
a pre-mapped environment peppered with obstacles. We visu-
alize the RRT* tree generation, planned path, trajectory and
odometry from Tello in Blender which provides an intuitive
visual perspective on the navigation process. We uploaded
our code on an NVIDIA Jetson Orin Nano which acts as the
computer for the Tello and sends position control commands
to it so that we succesfully achieve our objective of navigat-
ing from the start to goal without colliding with obstacles.
Our study showcases the quadcopter’s navigation capabilities,
highlighting the accuracy and adaptability of our approach.

II. DJI TELLO QUADCOPTER

The DJI Tello EDU is a state-of-the-art drone designed with
compactness and functionality in mind. It has a weight of
approximately 80 grams, inclusive of its propellers and battery,
and dimensions of 98×92.5×41 mm. The drone features 3-inch
propellers and boasts an array of integrated systems such as
a range finder, barometer, LED indicators, an advanced vision
system. Additionally, a Micro USB port ensures power and
data transfer capabilities. Regarding flight performance, the
Tello EDU can traverse up to 100 meters, reach speeds of 8
meters per second, sustain a flight for up to 13 minutes, and
achieve a maximum altitude of 30 meters. Its power system
is uniquely designed with a detachable 1.1Ah/3.8V battery for
extended use and convenience. Images and videos are stored
in JPG and MP4 formats, respectively, and the inclusion of
Electronic Image Stabilization (EIS) ensures high-quality and
stable footage.

III. NVIDIA JETSON ORIN NANO

We integrated the NVIDIA Jetson Orin module, a state-
of-the-art AI computing system with our DJI Tello EDU
quadcopter. This module stands out due to its energy effi-
ciency and great performance. Specifically, the Jetson Orin
delivers up to 275 trillion operations per second (TOPS),
signifying an eightfold performance enhancement over its
preceding generation. Such computational prowess allows for
the simultaneous execution of multiple AI inference pipelines,
a critical requirement for real-time processing in autonomous
systems. Furthermore, it offers robust high-speed interface
support, allowing a variety of sensor integrations essential for
drone operations.

IV. MAP READER

Our autonomous navigation process fundamentally hinges
on the precise representation and understanding of the environ-
ment. To this end, our approach incorporates an Environment
class that serves as the foundational block in reading, pro-
cessing, and graphically rendering the 3D space wherein the
quadcopter operates. This class parses a descriptive file which
encodes key environment parameters like spatial boundaries
and obstacles. In the interest of navigation safety, each block
undergoes a ’bloating’ process. This introduces a safety margin
around the obstacle, preventing the quadcopter from venturing
too close and risking potential collisions. The 3D environment
is digitally mapped within a map called as map array - a
strategic array where ’0’s signify obstacles and ’1’s symbolize
free spaces. This array serves as the digitized terrain for the
RRT* algorithm.

V. RRT* PATH PLANNER

The RRT* algorithm, tailored for a 3D environment, pro-
vides a sophisticated method for pathfinding amidst obstacles.
At its core, each node in the algorithm contains three spatial
coordinates (x, y, z), a reference to its parent node, and an
accumulated cost from the origin. The map array is initialized
which is taken from the map reader. Accompanying this, a
starting node and a destination node are defined, with the
former being placed within a list of vertices set for expansion.
Prior to each search iteration, the map is refreshed, situating
the starting node appropriately.



Fig. 1. DJI Tello

Fig. 2. DJI Tello

A fundamental component of the algorithm is its distance
measurement technique, leveraging the Euclidean distance for-
mula. For collision checking, the Bresenham’s line algorithm,
has been adapted to the 3D context. Through this, it checks
for potential collisions between two points by evaluating every
intermediary point on path.

As the algorithm iterates, it either selects the goal node
or crafts a random point within the 3D space. The selection
depends on a predefined goal bias, ensuring a delicate balance
between exploration and direct pathfinding.

Once a point is decided upon, the algorithm identifies the
nearest existing node within its current vertices. From this
node, it then ”steers” towards the random point. If this point
is distant beyond a fixed range, a new intermediate node is
calculated in its direction. However, if it’s closer, the point
itself gets selected. A noteworthy feature of RRT* is its ability
to identify neighbors of a given node within a set radius. This
forms the basis of its ’rewire’ function, a mechanism designed
to optimize the path. Essentially, this function evaluates if a
newly added node can offer a shorter route to its neighboring
nodes. If a shorter, obstacle-free path is detected, it promptly

”rewires” or updates the parentage of the nodes in question,
ensuring that the evolving path is not just valid, but also cost-
efficient.

In essence, RRT* emerges as an innovative tree-based
pathfinding algorithm. By judiciously sampling random points
in a 3D landscape, expanding purposefully in their direction,
and continuously refining its tree structure it returns a path.
The path formed consists of waypoints leading from the start
to the goal.

The tree expansion is visualized in blender where the
sampled nodes are visualized as spheres connected by
cylinders in blender.

VI. TRAJECTORY GENERATION

The waypoints generated from the path planner and taken
for trajectory generation. The goal is to generate a smooth
trajectory between waypoints that minimizes acceleration. We
use cubic polynomials to represent the trajectory between two
waypoints. The x, y, z coordinates are represented as below
as a function (f) of time(t) between the waypoints.



Algorithm 1 RRT* Algorithm
Data: n pts, neighbor size, goal sample probability,

steer distance, neighbor radius
Result: Path or empty list

1 Procedure RRT_star(n pts, neighbor size)
2 Initialize map for sample number = 1 to n pts do
3 random sample ←

get new point(goal sample probability)

nearest node, best dist ←
get nearest node(random sample)

sample node← steer(
random sample, nearest node, steer distance)

neighbors← get neighbors(
sample node, neighbor radius)

best neighbor ← GetBestNeighbor(neighbors)
if check collision(sample node, best neighbor)
then

4 sample node.parent← best neighbor

5 rewire(sample node, neighbors)
if distance to goal is small then

6 found← True

7 if found then
8 path← ConstructPath(goal) return path

9 else
10 print(”No path found”) return []

f(t) = a0 + a1t+ a2t
2 + a3t

3

To determine the coefficients a0, . . . , a3, we impose con-
straints based on the given waypoints and the desire to have
a smooth trajectory.

Constraints

Given waypoints p0, p1, . . . , pn at times t0, t1, . . . , tn:
1. The trajectory starts at p0 at t0:

f(t0) = p0

2. The trajectory goes through each waypoint:

f(ti) = pi, i = 1, . . . , n− 1

3. The trajectory ends at pn at tn:

f(tn) = pn

4. The velocity is continuous at each waypoint:

f ′(t−i ) = f ′(t+i ), i = 1, . . . , n− 1

5. The acceleration is continuous at each waypoint:

f ′′(t−i ) = f ′′(t+i ), i = 1, . . . , n− 1

Using these constraints, we can set up a system of equations
to determine the polynomial coefficients.

Matrix Formulation

We express the system of equations in matrix form Ax = b,
where:

• A is the matrix derived from evaluating the cubic polyno-
mial and its derivatives at the given waypoints and times.

• x is the vector of polynomial coefficients we want to find.
• b is the vector containing the waypoints and derived

conditions.

To find the coefficients x, we used the pseudo inverse
functionality of numpy:

x = A†b

Once the desired coefficients are obtained for the x, y
and z coordinates as a function of time between every two
waypoints, we now have the curve equations between two
waypoints, which can be used to obtain the positions, ve-
locities and accelerations at each instant of time between
the, leading to a dynamically feasible trajectory between the
waypoints.

POSITION CONTROLLER

Once we have the waypoints generated, we have the desired
coordinates at each instance of time. We take each of their
position coordinates and save them in a csv file. We then
used the position control functionality (go xyz speed) of Tello
in order to send it the saved coordinates in sequence. This
enables the execution of the trajectory on the Tello. The
drone follows the desired trajectory effectively in an actual
environment whose map was given to us with desired start
and goal positions, thereby completing the implementation of
our pipeline.

CONCLUSION

In this comprehensive study, we implemented autonomous
navigation on DJI Tello EDU quadcopter, showcasing safe and
efficient traversal in pre-mapped environments with obstacles.
The DJI Tello EDU, a cutting-edge, lightweight quadcopter,
equipped with NVIDIA Jetson Orin Nano, formed the back-
bone of our experiments. The intricate process began with
obtaining the precise map of the environment with the start
and goal locations. This paved the way for the sophisticated
RRT* algorithm, tailored for a 3D domain, to find a path
with waypoints from start to goal amidst obstacles. With a
path in place, the trajectory generation ensured a smooth
journey between waypoints using cubic polynomials, with
constraints ensuring continuity and smoothness. Finally, the
position controller translated these waypoint locations into
real-world motion on the Tello effectively enabling real-world
navigation from start to the desired goal position.



Fig. 3. Trajectory for the map given with RRT* tree

Fig. 4. Ghosted photo of quadcopter crashing while running

REFERENCES

[1] https://theclassytim.medium.com/robotic-path-planning-rrt-and-rrt-
212319121378

[2] Nitin J. Sanket, ”Trajectory and Motion Planning,” RBE595-F02-ST:
Hands-On Autonomous Aerial Robotics, Class 8, [Worcester Polytechnic
Institute], [2023].



[3] https://github.com/damiafuentes/DJITelloPy/tree/master/
[4] https://djitellopy.readthedocs.io/en/latest/tello/djitellopy.tello.Tello.go xyz speed


	Introduction
	DJI Tello quadcopter
	NVIDIA Jetson Orin Nano
	Map Reader
	RRT* path planner
	Trajectory generation
	References

