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Abstract—This project involves the implementation
of Motion Planning and Control Stack for a real
quadrotor using a predefined map, the NVIDIA Jetson
Orin Nano for computation, and the DJI Tello Edu
Quadrotor for execution. The system involves path
planning, waypoint generation, and position control
to autonomously navigate from a defined start to a
goal location while avoiding obstacles. The quadrotor
assumes perfect knowledge of the environment, takes
off and lands at specific locations, and prohibits flying
over obstacles. The choice of a position or velocity
controller was flexible in the problem statement,
therefore both were used with the primary objective
being efficient and safe navigation. The quadrotor’s
pose is visualized on a map using Blender throughout
the project.

I. INTRODUCTION

This project is centered around implementing
the RRTstar Motion Planning Algorithm a real
quadrotor, utilizing a predefined map, the compu-
tational capabilities of the NVIDIA Jetson Orin
Nano, and the flight execution capabilities of the
DJI Tello Edu Quadrotor. Our primary objective is
to achieve autonomous and safe trajectory planning
and execution, guiding the quadrotor from a de-
fined starting point to a predetermined goal location
within a mapped environment. Key components
of this project encompass path planning, waypoint
generation, and precise position control.

Our project relies on a pre-established map of
the environment, provided in a specific file format.
This map delineates the environment’s coordinates
and outlines obstacles in the form of boxes. Start
and goal locations are identified by distinctive white

strips. Overflight of obstacles is prohibited for
safety purposes.

The implementation strategy draws from our pre-
vious work in Project 2a where we implemented
RRTstar and generated a smooth trajectory using
Quintic Polynomials. We integrated it with the
DJITelloPy library for controlling the DJI Tello Edu
Quadrotor. We implemented the trajectory both on
a Position and Velocity Controller in the live demo
section of this Project. Given below is the link to
Videos of of demonstration for the training set Map
Environment Implementing a Velocity controller.

Link To Videos: Click Here

II. ENVIRONMENT SETUP(MAP READER FOR
REAL WORLD)

As part of the initial setup, program needs to read
environmental data from a text file. This text file
should contain obstacle dimensions formatted in the
following manner.

• Boundary: xmin ymin zmin xmax ymax zmax

• Block: xmin ymin zmin xmax ymax zmax

• Color: r g b

Here xmin ymin zmin represents the lower
left corner coordinates of the block/boundary
and xmax ymax zmax represents the upper right
coordinates of the block/ boundary. Script reads
the environment, plots it in Blender and later using
this script, we path a plan and generate a trajectory
for the real robot to execute.

https://drive.google.com/drive/folders/1JnSWjTRBPm8bSO2k8ORnvQtEIN_rXHqr?usp=sharing


Fig. 1: Blender Representation of the Real World
Map

III. IMPLEMENTATION STRATEGY AND
CHALLENGES

In the early stages of our project, our ap-
proach centered around the utilization of the
go_xyz_speed() function from the DJI Tello
library for position control. This function allowed
us to input waypoints generated by our RRTstar
algorithm from Project2a. However, we encoun-
tered a significant challenge with this approach.
The go_xyz_speed() function required position
inputs in integer values representing centimeters,
and the differences between successive trajectory
points were often minuscule, rendering them in-
sufficient for valid position inputs. In response to
this limitation, we adopted an alternative strategy,
making use of navigation points. Despite the inbuilt
position control being commendably accurate, we
observed that the quadrotor consistently came to
a complete stop at each waypoint, resulting in
undesirable delays and inefficiencies in its path-
following behavior.

To address this issue and enhance our control
capabilities, we transitioned to a velocity
control approach. This involved employing
the rc_control() function, which allowed us
to publish velocity commands to the quadrotor
at a fixed rate. This shift in control methodology
enabled us to directly implement our time-
parametrized velocity trajectory, derived from the
trajectory generator, into the quadrotor’s control
system. However, it’s important to note that the

velocity input range supported by the DJITelloPy
library was restricted to a range of -100 to +100
cm/sec, which is equivalent to -1 to 1 m/s.
Consequently, we needed to carefully adjust our
time parameters to ensure that the peak velocity
remained below 1 m/s, aligning with the library’s
constraints.

Notably, for this project, we chose not to
implement a custom controller, be it for position or
velocity control. Instead, we exclusively relied on
the drone’s built-in controller. This approach had
its limitations, particularly in terms of fine-tuning
control gains. To overcome this constraint, we
had to resort to tuning the tello.sleep()
function, which determined the frequency at which
the quadrotor received velocity commands. While
this adjustment ultimately allowed us to achieve
satisfactory control results, it was still marked
by a degree of unpredictability, especially when
compared to the precision of the position controller.

In our efforts to monitor the quadrotor’s progress,
we accessed odometry data through functions
like get_x_speed(), get_y_speed(),
and get_z_speed(). However, it’s crucial
to acknowledge that these functions provided
measurements in decimeters and returned rounded
values. Consequently, the logged odometry data
did not offer a fully accurate representation of the
quadrotor’s path traversal. In reality, the quadrotor
followed a considerably smoother trajectory than
what was reflected in the logged data, and this
distinction becomes evident when observing the
demonstration video of our project.



IV. RESULTS

Fig. 2: Path Generated by RRTstar planner(Blue)
v/s Traversed Trajectory of the Robot in Real En-
vironment(Magenta)

Fig. 3: Path Generated by RRTstar planner(Blue)
v/s Traversed Trajectory of the Robot in Real En-
vironment(Magenta)

• Link To position controller run: Click Here

• Link To velocity controller run: Click Here

V. OBSERVATIONS

A. Position Control vs. Velocity Control

• Position Control: We observed that the
position controller provided reasonably
accurate position control and exhibited greater
reliability compared to velocity control.
However, a notable drawback was that it

consistently came to a complete stop at
waypoints, resulting in slower execution.

• Velocity Control: In contrast, the velocity
controller offered accurate position control less
frequently when compared to the position con-
troller. However, it demonstrated a smoother
trajectory, leading to faster execution. This
approach of control holds the potential for
scalability in terms of higher velocities. The
issue of reliability can potentially be addressed
through improved odometry and perception
capabilities.

B. Reliance on IMU for Pose Estimation

• Both the position and velocity control imple-
mentations relied on the inbuilt drone IMU for
pose estimation. However, it became evident
that this reliance on a single source of odom-
etry may be insufficient for ensuring a robust
navigation system.

• To enhance the system’s reliability and per-
ception, it is imperative to consider integrating
additional sources of odometry data beyond the
IMU, allowing for more accurate and consis-
tent pose estimation.

These observations highlight the trade-offs be-
tween position and velocity control and emphasize
the need for improved odometry and perception
systems to enhance the overall performance and
reliability of the navigation system.

VI. CONCLUSION

We explored two primary control strategies: po-
sition control, which exhibited reliability but slower
execution due to waypoint stops, and velocity con-
trol, which provided a smoother trajectory and faster
performance at the cost of consistent accuracy.

One significant observation was the reliance on
the drone’s inbuilt IMU for pose estimation in both
control implementations. This single-source odom-
etry approach may be insufficient for robust naviga-
tion, emphasizing the need for additional odometry
sources for improved perception and reliability.

This project serves as a foundation for future
developments in autonomous navigation systems,

https://drive.google.com/file/d/1eef--Wr97GuflfDtVKikIfRKPuB6rRi2/view?usp=drive_link
https://drive.google.com/file/d/1Gieu-ZFKLmUZb80ybxaU9rh-MjVZsfvV/view?usp=drive_link


where a balance between accuracy, reliability, and
performance is crucial.
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