
P2: Tree Planning Through The Trees
Mayank Bansal

Robotics Engineering
Worcester Polytechnic Institute

Email: mbansal1@wpi.edu

Siyuan ’Oliver’ Huang
Robotics Engineering

Worcester Polytechnic Institute
Email: shuang4@wpi.edu

Miheer Diwan
Robotics Engineering

Worcester Polytechnic Institute
Email: msdiwan@wpi.edu

Abstract—The aim of this project is to implement path and
trajectory planning and tune the control stack for a quadrotor
to navigate from a start position to a goal position through
a pre-mapped or known 3D environment. The simulation is
done in Blender. The Path Planning is done through RRT*
algorithm and the trajectory planning is done using minimum-
snap trajectory planner. The controller is developed in a cascaded
fashion with the outer loop controlling the position and the inner
loop controlling the velocity of the drone. PID controllers are used
to track the trajectory generated.

I. MAP VISUALISATION

The known maps are stored in .txt files with the axes
boundary limit information of the environment and the cuboid
obstacles. The cuboid obstacles also have RGB values which
signify their color. The maps are visualized and simulated
using Blender. The boundary of the simulated environment is
made transparent using the Alpha Blending feature in Blender.
This is done so that the obstacles and the drone are visible
from outside.

Fig. 1. Side View of Map 1

Fig. 2. Orthographic View of Map 1

II. PATH PLANNING USING RRT*

The path from the start to end is found using RRT*. The
algorithm is as follows:

Algorithm 1 RRT* (Rapidly-exploring Random Tree*)
1: Rad← r
2: G(V,E) ▷ Graph containing edges and vertices
3: for itr in range(0, n) do
4: Xnew ← RandomPosition()
5: if Obstacle(Xnew) == True then
6: continue ▷ Try again if in an obstacle
7: end if
8: Xnearest← Nearest(G(V,E), Xnew)
9: Cost(Xnew)← Distance(Xnew,Xnearest)

10: Xbest,Xneighbors ←
findNeighbors(G(V,E), Xnew,Rad)

11: Link ← Chain(Xnew,Xbest)
12: for x′ in Xneighbors do
13: if Cost(Xnew) + Distance(Xnew, x′) <

Cost(x′) then
14: Cost(x′) ← Cost(Xnew) +

Distance(Xnew, x′)
15: Parent(x′)← Xnew
16: G← G ∪ {Xnew, x′} ▷ Add edge to the

graph
17: end if
18: end for
19: G← G ∪ Link ▷ Add the new link to the graph
20: end for
21: return G

The maximum number of samples(nodes) is 3000.

Fig. 3. Side View of RRT* Path



Fig. 4. Orthographic View of the final RRT* Path

III. TRAJECTORY GENERATION

Using the RRT* global path planner algorithm, we are
able to generate the shortest path from the ’Start’ position
to the ’Goal’ position within the map environment. Since
the path generated is not smooth and has sharp turns, it is
dynamically unfeasible as this will cause the quadrocopter to
overshoot significantly. Therefore, we convert the waypoints
obtained in the previous step to a smooth spline. Initially,
we tried to implement a quintic polynomial trajectory to
solve this problem. However, the trajectory generated did not
accurately incorporate all the waypoints. Hence, we decided
to use a minimum snap trajectory generator to generate a
smooth trajectory as shown in [1]. It aims to minimize the
”snap” or the fourth derivative of position with respect to time,
ensuring that the trajectory is not only continuous but also
has continuous velocity, acceleration, and jerk profiles. This
results in smoother and more natural movements, reducing
wear and tear on the robot or vehicle and improving overall
efficiency and safety. Through trial and error, we found out
that a velocity of 3 m/s was best for traversing the generated
trajectories. The code for trajectory generation was heavily
inspired by this GitHub repository: Quadrotor-Simulation.

Fig. 5. Side view of the generated trajectory

IV. COLLISION HANDLING

In RRT*, for collision handling, we are generating the 3D
coordinates of each point on the line connecting the sampled
node with the nearest node on the tree. Then we check if any
of these points lie inside an obstacle or outside the boundary of
the environment. If not, the new node is added to the tree. To
avoid the drone getting too near the obstacles, the boundaries
of the obstacles are bloated to create a safe distance for the
drone.

Fig. 6. Top view of the generated trajectory

Fig. 7. Orhtographic view of Map 1 with bloated obstacles

V. CONTROLLER DESIGN

The controller is designed in a cascaded manner in which
there is an outer position control loop and then there is an
inner velocity control loop. Both of these are PID controllers.
The controllers are tuned in a step-by-step manner. First, the
velocity controller is tuned since it is the inner control loop.
The PID tuning values are: (1,0,0) for x-direction; (1,0,0)
for y-direction and (0.1,0.01,0.1) for z-direction. When the
velocity controller is satisfactorily tuned, the position control
loop is tuned. The PID values are: (2,0.5,0.5) for the x-
direction; (2,0.5,0.5) for the y-direction and (20,0.1,0.1) for
the z-direction.

Fig. 8. Helical trajectory with tuned controller

https://github.com/Bharath2/Quadrotor-Simulation.git


Fig. 9. Position and Velocity plots for Helical trajectory

VI. RESULTS

• The trajectory plot and the plots of the position and
velocity for map 1 are shown in Fig. 10 and Fig. 11

• The trajectory plot and the plots of the position and
velocity for map 2 are shown in Fig. 12 and Fig. 13

• The trajectory plot and the plots of the position and
velocity for map 3 are shown in Fig. 14 and Fig. 15

• The trajectory plot and the plots of the position and
velocity for map 4 are shown in Fig. 16 and Fig. 17

• Video Submission Link

Fig. 10. Trajectory plot for Map 1

VII. DEPLOYMENT ON TELLO EDU DRONE

We used the procedure described above to navigate the
environment in the real world. We integrated our code with
the DJITelloPy library and deployed it on the real DJI Tello
EDU drone. Fig. 18 shows the drone.

Fig. 11. Position and Velocity plots for Map 1

Fig. 12. Trajectory plot for Map 2

Fig. 18. DJI Tello EDU Drone

A. Sim-2-Real

To traverse our generated trajectory we implemented a
simple position controller and passed commands to the drone
using the ‘go x y z speed’ command. The results were
satisfactory and the drone was able to reach the Goal without
colliding with any of the obstacles during multiple tests.
However, the traversed path was not smooth and hence we
decided to use a velocity controller for smooth trajectory
tracking. The velocity values are obtained from the trajectory
generator at each time step and are passed to the drone using
the command send rc control which takes in velocity values
in the format (left right velocity, forward backward velocity,
up down velocity, yaw velocity). The velocity values are
directly taken from the trajectory generator and the maximum
velocity for the drone was taken as 100 cm/s. The drone

https://wpi0-my.sharepoint.com/:f:/g/personal/msdiwan_wpi_edu/Elwl0XF2LDRNh4ZOzTRnjOgBTQPAUaEjthTs-ce6cRSjTA?e=1e3mdd
https://github.com/damiafuentes/DJITelloPy.git 


Fig. 13. Position and Velocity plots for Map 2

Fig. 14. Trajectory plot for Map 3

motion was observed to be smooth and followed the trajectory
pretty well. However, because of the high-velocity value, the
drone consistently converged at a distance of 40 cm away Goal
position in the X and Y direction.

• Video Submission Link

B. Limitations

1) Initially we implemented a position controller. Though
it does well to move the drone through the waypoints
generated by RRT*, due to limitations in how the API is
developed such as the drone will move to the specified
point only if the distance between the current location
and the next waypoint is greater than 30 cm, which
makes it difficult to accurately command the drone to
reach the goal.

2) One more problem was that the rc control accepts
velocity commands only in integers but the trajectory
generator generates float velocity values. So, we had
to round off these values to the nearest integers before
sending them to the drone. This led to the drone under-
shooting the actual goal position because we were often
sending commands that were not accurate according to
the generated velocity. This proved to be a challenge
when implementing a velocity controller.

Fig. 15. Position and Velocity plots for Map 3

Fig. 16. Trajectory plot for Map 4

3) The major problem we faced was that since the connec-
tion between Jetson and the drone was not secure and the
communication between the two used UDP architecture,
there might be losses in wireless data transfer that often
lead to the drone performing unexpected maneuvers.
This is more of a problem in the velocity controller
since we need to continuously publish the correct ve-
locity commands for the drone to perform the maneuver
correctly.

REFERENCES

[1] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning
for aggressive quadrotor flight in dense indoor environments,” in
International Symposium of Robotics Research, 2016. [Online]. Available:
https://api.semanticscholar.org/CorpusID:9070368

https://wpi0-my.sharepoint.com/:f:/g/personal/msdiwan_wpi_edu/EidgZfn89LdLiSFKquxknDIBS7sr8WZdLk2jYwexM0Pvfw?e=CRxHuH
https://api.semanticscholar.org/CorpusID:9070368


Fig. 17. Position and Velocity plots for Map 4


	Map Visualisation
	Path Planning Using RRT*
	Trajectory Generation
	Collision Handling
	Controller Design
	Results
	Deployment on Tello EDU Drone
	Sim-2-Real
	Limitations

	References

