
Autonomous navigation of drones in known real
environment

1st Venkateshkrishna
Masters in Robotics

Worcester Polytechnic Institute
Worcester, MA 01609
vparsuram@wpi.edu

2nd Athithya, Lalith
Masters in Robotics

Worcester Polytechnic Institute
Worcester, MA 01609

lnavaneethakrishnan@wpi.edu

3rd Gampa, Varun
Masters in Robotics

Worcester Polytechnic Institute
Worcester, MA 01609

vgampa@wpi.edu

Abstract—This project focuses on creating an autonomous
quadrotor navigation system within a known 3D environment
through real lab based experimentation. The objectives en-
compass developing robust path planning algorithms, including
RRT-connect*, for collision-free trajectory generation. Position
controller of the Tello drone is used to make the drone follow
the desired trajectory. To enable autonomous navigation in
complex terrains, with RRT-connect* serving as a foundational
step towards achieving this goal.

I. INTRODUCTION

In this project, we present a comprehensive implementation
approach comprising four fundamental components. Firstly,
we introduce a Map/Environment reader and visualization
method to interpret the pre-mapped 3D environment. Secondly,
we detail the integration of an RRT* (Rapidly-exploring Ran-
dom Tree Star) path planner, aimed at generating collision-free
paths connecting the predefined start and goal positions. Next,
we discuss the development of a trajectory planner designed
to refine the path produced by the RRT-connect* algorithm,
ensuring the creation of dynamically feasible trajectories.
This project’s multidisciplinary approach seeks to enable au-
tonomous navigation within a known 3D environment, encom-
passing path planning and trajectory optimization. Further this
code has been tested in simulation before deploying it on the
actual drone, hence allowing us to note the difference in sim
to real.

II. GENERATION OF MAP

The map provided for this project was defined by a col-
lection of cuboids, each serving a specific purpose within
the environment. The initial cuboid served as the boundary,
outlining the limits of the drone’s navigable area. Subsequent
cuboids were utilized to represent obstacles within the envi-
ronment. Each cuboid was characterized by two key points:
the lower-left vertex and the upper-right vertex, defining its
spatial dimensions. To facilitate visualization and mapping,
Blender’s primitive cube function was employed, generating a
comprehensive representation of the environment. This map,
consisting of boundary constraints and obstacle delineations,
served as the foundation for subsequent path planning, tra-
jectory optimization, and control system development for
autonomous quadrotor navigation.

III. SAMPLING BASED PLANNING USING RRT*

RRT* is a sampling based algorithm in which the search
tree rapidly expands from a start node. Subsequent points are
randomly generated in the search space. Then the nearest node
is found in the graph to the random point. A new node is
generated at fixed step distance from the nearest point in the
direction of the random point. If this node doesn’t collide with
any obstacle and the line joining this point and the nearest node
is not passing through any obstacle, then this node is added as
a vertex to the graph and the edge between the nearest node
and new node is created and added to the graph. The method
to check for collisions is explained in the subsequent section.
In RRT* further this graph is optimized as per a heurestic cost
so that an optimal path within the graph is selected at every
iteration. While this slows down the path planning algorithm,
the obtained path is generally much smoother. To speed up the
path planning algorithm connect strategy was used. In RRT*
generally a single node is added to the graph in every iteration.
In our variation of RRT* multiple vertices are generated at
fixed step size which are added based on the line connecting
the nearest node to the xrand until an obstacle is identified at
which stage points are no longer added. This is called as the
connect strategy which is explained in 2. The entire algorithm
is explained in 1 .This connect algorithm replaces Steer in the
standard RRT* algorithm. We used the step size as 0.6m. Also
we generated more points even after the path is found to refine
the same.

IV. COLLISION CHECKING

To check for collisions with an obstacle. First we inflated
the obstacle by the largest dimension of the drone, which was
0.4m. Then we treated the drone as a point object. To check for
collisions we simply checked if each dimension of the center
of the drone would be between the extreme points provided for
each block. Hence to check for collision in the path between
two vertices, we just checked for collision on multiple evenly
spaced points on the line between two vertices. The points on
the line were spaced by 0.2m.

V. TRAJECTORY GENERATION

Using the waypoints generated by RRT*, we need to
compute trajectory which is the desired position, veloc-



Algorithm 1 RRT* Algorithm
1: V ← {xinit};E ← ∅;
2: for i = 1 to n do
3: xrand ← SampleFreei;
4: xnearest ← Nearest(G = (V,E), xrand);
5: Xnew ← Connect(xnearest, xrand);
6: for all xnew ∈ Xnew do
7: if ObstacleFree(xnearest, xnew) then
8: xmin ← xnearest
9: cmin ← Cost(xnearest) + c(Line(xnearest, xnew));

10: V ← V ∪ {xnew};
11: for all xnear ∈ Xnear do
12: if CollisionFree(xnear, xnew)∧

Cost(xnear) + c(Line(xnear, xnew)) < cmin then
13: xmin ← xnear
14: cmin ← Cost(xnear) + c(Line(xnear, xnew))
15: end if
16: end for
17: E ← E ∪ {(xmin, xnew)}
18: cnear ← Cost(xnear)
19: for all xnear ∈ Xnear do
20: if CollisionFree(xnew, xnear)∧

Cost(xnew) + c(Line(xnew, xnear)) < cmin then
21: xparent ← Parent(xnear);
22: E ← (E \ {(xparent, xnear)}) ∪ {(xnew, xnear)};
23: end if
24: end for
25: end if
26: end for
27: end for
28: return G = (V,E);

Algorithm 2 Connect algorithm
1: Xnew ← ∅;
2: xrand ← SampleFreei;
3: xnearest ← Nearest(G = (V,E), xrand);
4: xnew ← Steer(xnearest, xrand);
5: while ObstacleFree(xnew)∨ Distance(xnew, xrand) do
6: Xnew ← Xnew ∪ xnew
7: xnew ← Steer(xnew,xrand)
8: end while
9: return Xnew

ity,acceleration and yaw. First the trajectory obtained from
RRT* is refined. For this, we check, starting from the first
point if the line joining this point and the next point in the
waypoint list are is collision free, if yes then the next point
is removed from the waypoints list. This is repeated until we
encounter a case wherein we observe a collision in the line
joining start point and the next point. When that occurs, the last
removed point is re inserted and we repeat the same procedure
as above, with the reintroduced point taking the place of the
start point. Next to generated the trajectory between the refined
way points we used a 7th degree polynomial fit between

every two points. Given a time difference to reach from one
point to the next and the boundary conditions we can obtain
the coeffecients of all the 7th degree polynomial. To find
the time instants for every two adjacent points we used an
optimizer. The cost for the optimizer is a function of the
time instants. More specifically based on the time instants,
the polynomials are generated and from them, snap of the
polynomial is calculated which is part of the cost, along with
the time difference between two points. We used the COBYLA
optimizer to optimize the trajectory. To add in the constraints
of maximum velocity, we added the condition of minimum
time required to traverse between two points such that it would
result in feasible velocity.

VI. CONTROLLER DESIGN

We used the Tello drone’s position controller API to send
desired position and speeds generated from the trajectory.
There was some inaccuracy as it only took integers as input,
though in centimeters. Furthermore as the internal controller
only depended on IMU, there was some minor drift observed.

VII. RESULTS

We have tested this algorithm for autonomous navigation in
a known environment in the Pear lab. The map and inflated
obstacles are seen in 1. Next, the RRT tree can be seen in 2.
The optimal path from RRT along with the trajectory generated
by the optimizing algorithm is seen in 3. The offset of the
drone’s final position with respect to the goal position can
be seen in 4 .This shows how well our drone has performed.
You can see that the RRT tree very quickly expands into the
entire navigatable area. And the trajectory generated is very
smooth and passes through the points given by RRT* which
are highlighted in green. At the end we can see the offset
between the end goal and the actual ending position of the
drone, which highlights the drift.



Fig. 1. Inflated environment

Fig. 2. RRT tree



Fig. 3. Optimal path to goal (green) and trajectory(blue)



Fig. 4. Final position of the drone



VIII. VIDEOS

The videos of autonomous navigation in different environ-
ments can be found at videos

IX. CONCLUSION

In this project we immplemented an autonomous stack
to control a drone in a real known environment. The stack
was implemented on python and tested in real world map
setup. Our optiimzed stack is able to generate the path and
trajectories quickly, as well as making sure that the drone is
safe and able to get to the goal quickly.

REFERENCES

[1] RRT Star: link
[2] Trajectory Optimization: link

https://drive.google.com/drive/folders/15-ZTu5pDTPBgkMsRr_F0zQdjq8XVSq4M
https://arxiv.org/abs/1105.1186
https://github.com/Bharath2/Quadrotor-Simulation/tree/main

	Introduction
	Generation of Map
	Sampling based planning using RRT*
	Collision Checking
	Trajectory Generation
	Controller Design
	Results
	Videos
	Conclusion
	References

