
Real-time Autonomous Quadrotor Navigation and
Control with DJI Tello and Jetson Nano

Ankush Singh Bhardwaj
abhardwaj@wpi.edu

Sri Lakshmi Hasitha Bachimanchi
sbachimanchi@wpi.edu

Anuj Pradeep Pai Raikar
apairaikar@wpi.edu

Abstract—This project presents the implementation of the
navigation stack including planning and control on the DJI Tello
drone in the real-world testing environment. The trajectory
calculation and visualization is performed on the NVIDIA
Jetson Orin Nano and is executed on the DJI Tello edu drone.

I. ENVIRONMENT

The environment comprises tall ”tree-like” structures repre-
sented as boxes, extending from the floor to the ceiling. These
boxes are defined in the ”mapx.txt” file and serve as obstacles
in our trajectory calculations. The start and the goal locations
in addition to the positions of boxes are used to determine the
flight path of the drone. The real-world scenario can be seen
in Fig 1.

Fig. 1. Sample Environment

II. IMPLEMENTATION

A. Reading the Map
Before testing on real-world environment, we simulated the

map and the navigation of the drone on Blender. We used the
training map given in ”.txt” file for simulating the environment
with boundaries and obstacles. The file contains the boundary
coordinates and the positions of block obstacles that exist
within the environment of the drone. We considered bloated
dimensions of the obstacles for avoiding collisions to calculate
the trajectory. We have considered the bloat dimensions to be

half of the size of the drone considered as a cuboid with width
and length as 0.3m and height as 0.5m.

B. Implementation of Path Planner
We have used RRT* to obtain paths from start to goal.

Rapidly Exploring Random Trees - Star (RRT*)
The algorithm attempts to find a path from a start point to

a goal point while avoiding specified obstacles, expanding a
tree of potential paths across the configuration search space
until the goal is reached.

Deeper Look

Tree Expansion: The algorithm iteratively expands the
tree from the start position by performing the following steps
for a specified number of iterations numNodes:

1. Random Sampling: Generate a random point in the
search space(p1)

2. Find Nearest Node: Find the closest node(p2) to
the randomly sampled point(p1) from the existing nodes.

3. Steering: Generate a new node(p3) by steering from
the nearest node(p2) towards random node p1(by some
pre-defined distance or until p1 is reached).

4. Collision Check: Verify that the path from closest
node(p2) to new node(p3) doesn’t intersect with any
obstacle.If not p3 is a valid node

Node Addition: Optionally, the algorithm explores if
p3 can be connected to other nearby nodes in a manner that
might provide a lower-cost path.
Rewiring: It checks other nodes and if a path from p3 to
another node is shorter than the existing path to that node
(and doesn’t intersect with obstacles), the parent of that node
is changed to p3.

5. P3 is valid: A new node p3 is added to the tree,
with its parent set to p2 and its cost calculated as the distance
from p2 plus the cost of p2

6. P2 is within a certain distance from the goal: it



checks whether a direct path from p2 to the goal is free from
obstacles. If it is, it adds the goal to the tree, connected to
p3, and terminates the algorithm.

The algorithm is implemented in 3D Space. Distances
and we chose the following parameters:

a. The minimum acceptable distance to goal as 1.0
b. The number of nodes being sampled as 5000.
c. Neighbor search radius as 50

Fig. 2. Pseudocode for RRT*

C. Trajectory Generation
To make the paths generated by RRT* smooth and

dynamically feasible, we converted the path into a trajectory.

1) Fitting a Spline:

• We are creating quintic trajectories. We are
considering pairs of waypoints, taking the segment
length and dividing by average velocity to find
the time taken to traverse between the individual
segment lengths. Acceleration at the waypoints are
always zero.

Position, Velocity and Acceleration Trajectories
are given by:
x = a0 + a1t+ a2t

2 + a3t
3 + a4t

4 + a5t
5

ẋ = a1 + 2a2t+ 3a3t
2 + 4a4t

3 + 5a5t
4

ẍ = 2a2 + 6a3t+ 12a4t
2 + 20a5t

3

• Bounding conditions:
1. Start and the First way-point: the initial
velocity and acceleration are zero, while the final
velocity is the assumed average velocity(v).
2. Intermediate way-points: The velocity profiles
are such that the initial and final velocity are both

set to v.
3. Final way-point: The initial velocity is v and
the final velocity and acceleration is zero.

• Through solving the equations above we get the
coefficients for the spline equations and the time
stamps corresponding to the positions in the path.
The resultant spline is pruned and optimized.

2) Pruning the Trajectory:

The waypoints generated previously are checked for
collision with our obstacles and the unnecessary
waypoints are eliminated. The profiles for position,
velocity and acceleration are stored in a csv file and is
saved on the computer.

3) Smoothing the Trajectory:

We are performing gradient descent smoothing on the
path (a sequence of points) by iteratively adjusting each
point (except for the first and the last ones) based on its
original position and the positions of its neighbors. The
adjustment is governed by two weights (weight data and
weight smooth) and continues until the total change for
all points in one iteration is less than a defined tolerance.

Deeper Look: In repeated cycles, every point (except the
first and last) is nudged: Partly toward its original position
in the un-smoothened path. Partly toward the average of its
neighbors in the smoothed path. These nudges continue until
the points stop moving significantly (i.e., total movement
across all points is below a tiny threshold).

D. Controller Strategy and Tuning Gains

The quadrotor is tuned to follow the desired trajectory
generated from the path planned by RRT* algorithm without
collisions. The controller designed for the quadrotor is a
cascaded controller with outermost loop as the position
controller and the penultimate loop as the velocity controller.
The position controller uses PID controller with 3 sets of
gains for x,y and z for a stable position control for positioning
the quadrotor at desired locations. The velocity controller
again uses PID controller with 3 sets of gains.

The position control loop and the velocity control loop are
tuned individually with the given sample trajectory file with
position, velocity and acceleration values corresponding to
a helical trajectory. And the tuned parameters are verified
with few more trajectory files to check the hovering of
the quadrotor at a fixed location. The results of the tuned
controller with the desired and actual positions, velocities are
shown in the plots below.

The gains tuned are shown in TABLE 1



TABLE I
PID CONTROLLER PARAMETERS

Parameter Kp Ki Kd

positionx 1 0.1 0
positiony 1 0.1 0
positionz 1 0 0
velocityx 1 0 0
velocityy 1 0 0
velocityz 3 0.3 0.1

PID gains for X and Y directions are kept same as it is
a symmetric drone with same dynamics along both the axes.
And the velocity control loop is tuned first by keeping the
gains of the position control loop to 0 and considering one
gain.

III. TESTING IN REAL ENVIRONMENT

The trajectory generated from the path planner is tested on
the DJI Tello in real given tested map scenario with obstacles
in the given time of 15 minutes. The given test map is read
from the ”map.txt” file and the trajectory path in the .csv
path is given to the quadrotor to follow using Jetson Nano.
The DJI Tello was able to execute the trajectory decently
reaching the goal position of the environment. The video of
the testing is attached as in the submitted files.

Jetson Nano and DJITelloPy

We have used NVIDIA Jetson Orin Nano to send commands
to the DJI Tello connected over wifi. We have done this using
the DJITelloPy python library that allows control of the drone
using Python. We used methods like connect(), takeoff()
and go xyz speed() to precisely maneuver and control the
drone. Additionally we have used methods get height and
get current state for monitoring and tracking the state of the
drone.

The trajectory that is produced from feeding the relevant
map is stored in a csv file in a local location. Each column of
the file contains the position, velocity and acceleration profiles
at each waypoint along the time-bounded quintic trajectory.
Another program interprets the positions from the csv file and
processes the relative

IV. INTERESTING OBSERVATIONS

• The coordinate system for the drone is as in Fig 3.

• The average velocity was chosen to be 20 centimetres
per second to generate the trajectory.

• If the points along the quintic spline we generated from
our controller, are beyond the boundary ranges; they are
clipped to lie within them.

• From our usage of DJITelloPy package’s go xyz speed
to command our drone to move along the time bounded

Fig. 3. The co-ordinate system for DJI Tello

trajectories. We noticed that:

– The command takes in arguments as relative
positions with respect to current state.

– The absolute changes in the X, Y and Z positions
cannot exceed 20 centimetres simultaneously, and
the same was mentioned in the Tello SDK user guide

– We expanded the bloat dimensions to the size of the
robot to have a safer and better trajectory calculation.

• The last waypoint was calculated to be close to the
goal, however not at it. Adding the goal node as the last
waypoint assisted the drone to execute landing close to
the desired goal location.

• Continuously using the drone led to odometry
succumbing to skew in sensing.

V. REFERENCES

1 Principles of Robot Motion: Theory, Algorithms, and
Implementations” by Howie Choset, Kevin M. Lynch, et
al.

2 https://docs.px4.io/main/en/flight stack/controller diagrams.html
3 https://theclassytim.medium.com/robotic-path-planning-

rrt-and-rrt-212319121378
4 https://github.com/damiafuentes/DJITelloPy/tree/master/djitellopy
5 https://dl-cdn.ryzerobotics.com/downloads/Tello/Tello

SDK 2.0 User Guide.pdf


	Environment
	Implementation
	Reading the Map
	Implementation of Path Planner
	Trajectory Generation
	Controller Strategy and Tuning Gains

	Testing in Real Environment
	Interesting Observations
	References

