
P2A: Tree Planning Through the Trees!
Dushyant Patil

Department of Robotics Engineering
Worcester Polytechnic Institute

Worcester, United States of America
dpatil1@wpi.edu

Keshubh Sharma
Department of Robotics Engineering

Worcester Polytechnic Institute
Worcester, United States of America

kssharma@wpi.edu

Abstract—This project presents an approach for path planning
and trajectory tracking over a known map. We use RRT*
algorithm to find obstacle avoiding path between start and goal.
We use trajectory smoothing to generate a feasible path. We
perform a PID controller to perform trajectory controller which
maintains quadrotor dynamics

I. PROBLEM STATEMENT

The aim of this project is to execute motion planning
in a known forest. For this we will be using the RRT*
algorithm to get a strictly linear path. The estimated path is
then smoothened to allow for efficient navigation and smooth
transition from one segment of RRT* path to other. This
smoothed feasible trajectory is then tracked by the drone with
the help of a PID controller.

II. SIMULATING WORLD MAP IN BLENDER

The data provided to us was the textformat which consists
of information about boundaries of ’world’ and boundaries of
obstacles. We load this data in blender as cube objects using
primitivecubeadd function of bpy module. The ’world’ cube
is made transparent with the help of mixed shader in blender.
The map is displayed as shown below in blender:

Fig. 1. World map with obstacles

III. CONFIGURATION SPACE

To maintain a safe distance between drone and obstacles
during navigation, we inflate the size of obstacle by a certain
factor. In our case with map1, we increased the size of
obstacles by 10% (As shown in appendix). The image below
shows obstacles inflated by 10% (the silhouettes surrounding

blue and green cube in the image)

Fig. 2. Inflated obstacles to create configuration space

Fig. 3. Inflated obstacles to create configuration space

Fig. 4. Inflated obstacles to create configuration space



IV. RRT* PATH FINDING

Rapidly-exploring Random Trees Star (RRT*) is a path
planning algorithm used in robotics and AI. It iteratively
builds a tree of potential paths from a starting point to a
goal while minimizing the overall path cost. RRT* efficiently
explores the configuration space, incrementally improving
the generated paths by reconfiguring the tree structure and
selecting low-cost paths. This algorithm is particularly useful
for solving complex motion planning problems in dynamic
environments.
The algorithm looks like follows:

Fig. 5. RRT* Algorithm

For our application we sampled in euclidean space and used
the L2 norm for cost calculation between sampled nodes. The
nodes should be within 1.5 units of distance between each
other and we decided to ignore all the obstacles that comes
before the sampled points for optimization of collision check-
ing. The collision checking algorithm utilizes intersection of
line between the nodes with all of the 6 faces of the cuboidal
obstacle defined which is faster than volumetric calculations.

Fig. 6. RRT Path in blender

The path which we found for above mentioned start and
goal positions are shown in figures 6, 7, 8.

Fig. 7. RRT Path in blender

Fig. 8. RRT Path in blender

V. TRAJECTORY GENERATION

The RRT path found as shown above is not a smooth
trajectory and consists of a number of linear segments between
waypoints which are the nodes in RRT path. This path does
not allow a smooth transition from one segment to next if those
2 segments are not colinear (which they are usually not). This
causes the drone to slow down before moving to next segments
in the path which is very inefficient. To solve this problem,
we use cubic trajectory generation. We assume the drone to
follow cubic trajectory between any 2 waypoints which gives
us a time parameterized trajectory as follows:

x(t) = a0 + a1t+ a2t
2 + a3t

3 (1)

Each segment of the RRT path will have their own coefficients
a0, a1, a2, a3 for all 3 axes of motion. To find these coefficients
we impose the initial condition the the velocity at the start
and end is 0. We also impose the continuity condition during
transition from one segment to next:

veli(t = tf,i) = veli+1(t = t0,i+1) (2)

acci(t = tfi = acci+1(t = tfi+1) (3)

Using this transition condition, we solve ffor the coefficients
of all the cubic spline for all segments at once.
Let us assume that there are m segments (i.e. m+1 nodes in
RRT path). Let A be a matrix of size 4mx4m. A is composed
of 3 submatrices Apos [2mx4m], Atransition [2(m-1)x4m],
Aendvel[2x4m].

A =

 Apos

At

Aendvel

 (4)



We solve for below equation to find coefficients:

A ∗ Coeffs = RHS (5)

Apos =



1 0 0 0 · · ·
1 tf1 t2f1 t3f1 · · ·
0 0 0 0 1 0 0 0 · · ·
0 0 0 0 1 tf2 t2f2 t3f2 · · ·
...

...
. . .

...
. . .

...
...

...
. . .

...
. . .

...
· · · 0 0 0 0 1 0 0 0
· · · 0 0 0 0 1 tfm t2fm t3fm



At =



0 1 2tf1 3t2f1 0 −1 0 0 · · ·
0 0 2 6tf1 0 −2 0 0 · · ·
...

... · · ·
...

...
...

... · · ·
...

...
· · · 0 1 2tfm 3t2fm 0 −1 0 0

· · · 0 0 2 6tf1 0 −2 0 0


Aendvel =

[
0 1 0 0 · · ·
· · · 0 1 2tfm 3t2fm

]

Coeffs =



a0,1
a1,1
a2,1
a3,1
a0,2
a1,2
a2,2
a3,2

...

...
a0,m
a1,m
a2,m
a3,m



RHS =



x0

x1

x1

x2

...
xm−1

xm

...
0
0
...

velstart
velend



Here tfi is time assumed to travel ith segment. We use a
heuristic to allot time per segment. In out case, we find the total
distance of travel and the time per segment was proportional
to the segment length. Solving for equation 5 we get following
smoothed trajectories (compared with RRT path).

Fig. 9. RRT 2D Path

Fig. 10. Smoothened 2D Path

VI. TRAJECTORY FOLLOWING

Trajectory generated in above step is followed with the
help of PID controller which was prewritten as part of the
codebase. We had to tune the PID gains for inner loop of
velocity control and the position control PID gains as well.
We tried to tune the velocity controller first and then tried to
tune the position controller gains. We first tried to tune the
PID gains so that the drone could hover at one place. Then we
tried to improve those gains so that the drone could move on
a linear trajectory (initially with a constant ’z’, then a linearly
changing ’z’). After that we tried to move the drone on a
trajectory with constant acceleration. In the end,we further
tuned the gains on the sample helical trajectory provided to
us as the part of the assignment. We used following gains for
PID controller:
xpid = (1, 0.0, 0.1)
ypid = (1, 0, 0.1)
zpid = (1.5, 0, 0.)
vxpid = (2, 0, 0.0)
vypid = (2, 0, 0.0)
vzpid = (2, 0, 0,)

We got the following results for few of the above mentioned
cases:



Fig. 11. Constant velocity trajectory

Fig. 12. Constant Acceleration

Fig. 13. Sample Trajectory

We then tried these gains with the smoothened trajectory
generated using cubic spline equations. We found following
results:

VII. TEST SET RESULTS

Below are 2D and 3D plots for performance of the controller
on test sets. For test dataset 3, we selected start point (2,3,5) as
the start point provided to us initiially was very close to first
obstacle and if we inflate the obstacles, the inflated obstacle

Fig. 14. Sample Trajectory

Fig. 15. Actual trajectory between goal and start

Fig. 16. 3D Desired vs Actual

and drone collide. Thus we select start point as [2,3,5] and
end point as [19,3,5]

REFERENCES

[1] A Quaternion-based Unscented Kalman Filter for Orientation Tracking
[2] Class Notes by Prof. Nitin Sanket

VIII. APPENDIX

A. Obstacle Inflation for Configuration Space

Get boundaries for all obstacles from map files provided
For each obtsacle:
xmin, ymin, zmin, xmax, ymax, zmax, = boundaries of
obstacle



Fig. 17. Map2 Desired vs Actual

Fig. 18. 3D Map2 Desired vs Actual

Fig. 19. Map2 RRT

Fig. 20. Map2 RRT

xlength = xmax - xmin
ylength = ymax-ymin
zlength = zmax - zmin
xmin = max(xminworld, (xmin - 0.1*xlength))
xmax = min(xmaxworld, (xmax + 0.1*xlength))
ymin = max(yminworld, (ymin - 0.1*ylength))

Fig. 21. Map2 Path

Fig. 22. Map3 Desired vs Actual

Fig. 23. Map3 3D Desired vs Actual

ymax = min(ymaxworld, (ymax + 0.1*ylength))
zmin = max(zminworld, (zmin - 0.1*zlength))
zmax = min(zmaxworld, (zmax + 0.1*zlength))



Fig. 24. Map3 RRT

Fig. 25. Map3 RRT

Fig. 26. Map3 Path


	Problem Statement
	Simulating world map in blender
	Configuration Space
	RRT* Path finding
	Trajectory Generation
	Trajectory Following
	Test Set Results
	References
	Appendix
	Obstacle Inflation for Configuration Space


