
Tree Planning Through The Trees!
Team Nimbus Navigators

One Late Day

Chaitanya Sriram Gaddipati
Department of Robotics Engineering

Worcester Polytechnic Institute
Worcester, Massachusetss 01609

Email: cgaddipati@wpi.edu

Ankit Talele
Department of Robotics Engineering

Worcester Polytechnic Institute
Worcester, Massachusetss 01609

Email: amtalele@wpi.edu

Shiva Surya Lolla
Department of Robotics Engineering

Worcester Polytechnic Institute
Worcester, Massachusetss 01609

Email: slolla@wpi.edu

Abstract—In this project, we implement path planning for
a quadcopter using the RRT* algorithm. Waypoints generated
from the path planner serve as input for trajectory planning,
which aims to generate a minimum acceleration trajectory.
Subsequently, a PID controller is implemented to navigate the
quadcopter from its starting position to its intended goal along
the generated trajectory within a pre-mapped environment.

I. INTRODUCTION

Autonomous navigation using quadcopters demands robust
path planning to determine an optimal or near-optimal route,
effective trajectory planning to ensure smooth motion, and
dependable control to execute the planned motion accurately.
In this study, we present a comprehensive pipeline for the
autonomous navigation of quadcopters within a pre-mapped
environment peppered with obstacles. All visualizations, from
path planning to control execution, are rendered using Blender,
providing an intuitive visual perspective on the navigation
processes. Our methodology commences with the RRT* algo-
rithm, a well-regarded sampling-based path planning method.
Through Blender visualizations, we can intricately observe the
tree expansion during the planning phase, granting insights
into the path’s formation. With the path determined, our focus
shifts to trajectory planning, aiming to generate a route that not
only follows the waypoints but is also dynamically feasible,
so as to make the quadrotor smoothly transition between
waypoints and ensure stability. The culmination of our ap-
proach lies in the implementation of a Proportional-Integral-
Derivative (PID) controller. The PID controller ensures the
quadcopter faithfully follows the plotted trajectory, adjusting
in real-time to discrepancies between the desired and actual
flight paths. Our study showcases the quadcopter’s naviga-
tion capabilities through Blender visualizations on various
test maps, highlighting the accuracy and adaptability of our
approach across different scenarios.

II. MAP READER

Our autonomous navigation process fundamentally hinges
on the precise representation and understanding of the environ-
ment. To this end, our approach incorporates an Environment

class that serves as the foundational block in reading, pro-
cessing, and graphically rendering the 3D space wherein the
quadcopter operates. This class parses a descriptive file which
encodes key environment parameters like spatial boundaries
and obstacles. In the interest of navigation safety, each block
undergoes a ’bloating’ process. This introduces a safety margin
around the obstacle, preventing the quadcopter from venturing
too close and risking potential collisions. The 3D environment
is digitally mapped within a map called as map array - a
strategic array where ’0’s signify obstacles and ’1’s symbolize
free spaces. This array serves as the digitized terrain for the
RRT* algorithm.

III. RRT* PATH PLANNER

The RRT* algorithm, tailored for a 3D environment, pro-
vides a sophisticated method for pathfinding amidst obstacles.
At its core, each node in the algorithm contains three spatial
coordinates (x, y, z), a reference to its parent node, and an
accumulated cost from the origin. The map array is initialized
which is taken from the map reader. Accompanying this, a
starting node and a destination node are defined, with the
former being placed within a list of vertices set for expansion.
Prior to each search iteration, the map is refreshed, situating
the starting node appropriately.

A fundamental component of the algorithm is its distance
measurement technique, leveraging the Euclidean distance for-
mula. For collision checking, the Bresenham’s line algorithm,
has been adapted to the 3D context. Through this, it checks
for potential collisions between two points by evaluating every
intermediary point on path.

As the algorithm iterates, it either selects the goal node
or crafts a random point within the 3D space. The selection
depends on a predefined goal bias, ensuring a delicate balance
between exploration and direct pathfinding.

Once a point is decided upon, the algorithm identifies the
nearest existing node within its current vertices. From this
node, it then ”steers” towards the random point. If this point
is distant beyond a fixed range, a new intermediate node is
calculated in its direction. However, if it’s closer, the point



itself gets selected. A noteworthy feature of RRT* is its ability
to identify neighbors of a given node within a set radius. This
forms the basis of its ’rewire’ function, a mechanism designed
to optimize the path. Essentially, this function evaluates if a
newly added node can offer a shorter route to its neighboring
nodes. If a shorter, obstacle-free path is detected, it promptly
”rewires” or updates the parentage of the nodes in question,
ensuring that the evolving path is not just valid, but also cost-
efficient.

In essence, RRT* emerges as an innovative tree-based
pathfinding algorithm. By judiciously sampling random points
in a 3D landscape, expanding purposefully in their direction,
and continuously refining its tree structure it returns a path.
The path formed consists of waypoints leading from the start
to the goal.

The tree expansion is visualized in blender where the
sampled nodes are visualized as spheres connected by
cylinders in blender.

Algorithm 1 RRT* Algorithm
Data: n pts, neighbor size, goal sample probability,

steer distance, neighbor radius
Result: Path or empty list

1 Procedure RRT_star(n pts, neighbor size)
2 Initialize map for sample number = 1 to n pts do
3 random sample ←

get new point(goal sample probability)

nearest node, best dist ←
get nearest node(random sample)

sample node← steer(
random sample, nearest node, steer distance)

neighbors← get neighbors(
sample node, neighbor radius)

best neighbor ← GetBestNeighbor(neighbors)
if check collision(sample node, best neighbor)
then

4 sample node.parent← best neighbor

5 rewire(sample node, neighbors)
if distance to goal is small then

6 found← True

7 if found then
8 path← ConstructPath(goal) return path

9 else
10 print(”No path found”) return []

IV. TRAJECTORY GENERATION

The waypoints generated from the path planner and taken
for trajectory generation. The goal is to generate a smooth

trajectory between waypoints that minimizes acceleration. We
use cubic polynomials to represent the trajectory between two
waypoints. The x, y, z coordinates are represented as below
as a function (f) of time(t) between the waypoints.

f(t) = a0 + a1t+ a2t
2 + a3t

3

To determine the coefficients a0, . . . , a3, we impose con-
straints based on the given waypoints and the desire to have
a smooth trajectory.

Constraints

Given waypoints p0, p1, . . . , pn at times t0, t1, . . . , tn:
1. The trajectory starts at p0 at t0:

f(t0) = p0

2. The trajectory goes through each waypoint:

f(ti) = pi, i = 1, . . . , n− 1

3. The trajectory ends at pn at tn:

f(tn) = pn

4. The velocity is continuous at each waypoint:

f ′(t−i ) = f ′(t+i ), i = 1, . . . , n− 1

5. The acceleration is continuous at each waypoint:

f ′′(t−i ) = f ′′(t+i ), i = 1, . . . , n− 1

Using these constraints, we can set up a system of equations
to determine the polynomial coefficients.

Matrix Formulation

We express the system of equations in matrix form Ax = b,
where:

• A is the matrix derived from evaluating the cubic polyno-
mial and its derivatives at the given waypoints and times.

• x is the vector of polynomial coefficients we want to find.
• b is the vector containing the waypoints and derived

conditions.

To find the coefficients x, we used the pseudo inverse
functionality of numpy:

x = A†b

Once the desired coefficients are obtained for the x, y
and z coordinates as a function of time between every two
waypoints, we now have the curve equations between two
waypoints, which can be used to obtain the positions, ve-
locities and accelerations at each instant of time between
the, leading to a dynamically feasible trajectory between the
waypoints.



PID CONTROLLER

Once we have the trajectory generated, we have the desired
coordinates at each instance of time. We then tuned a cascaded
controller inspired from the PX4 Stack for the quadrotor to
follow the desired trajectory.

A total of 6 gains have been tuned with 3 gains for the
position control loop and 3 gains for the velocity control loop.

Position Control Parameters

For the position control, the PID gains havebeen tuned to:

For x :

Px = 1.2,

Ix = 0.55,

Dx = 0.05,

For y :

Py = 1.2,

Iy = 0.55,

Dy = 0.5,

For z :

Pz = 2.5,

Iz = 0.7,

Dz = 0.5.

Velocity Control Parameters

For velocity control, the PID gains are:

For vx :

Pvx = 1.5,

Ivx = 0.00,

Dvx = 0.15,

For vy :

Pvy = 1.5,

Ivy = 0.08,

Dvy = 0.01,

For vz :

Pvz = 4.05,

Ivz = 0.002,

Dvz = 0.1.

With the above parameters the drone follows the desired
trajectory effectively thereby completing the implementation
of our pipeline.

V. CONCLUSION

In this study, we addressed the multifaceted challenge of
autonomous quadcopter navigation within obstacle-rich en-
vironments, unveiling a cohesive pipeline that integrates the
RRT* algorithm, cubic polynomial trajectory generation, and
a meticulously tuned PID controller. By employing the RRT*
algorithm, we achieved optimal path planning, visualized
compellingly via Blender, offering insights into real-time tree
expansion. This path, when passed through our trajectory
generation phase, ensures dynamic feasibility, epitomizing the
essence of smooth, safe navigation. Our PID controller, assures
adherence to the plotted trajectory, rectifying any deviations.
These intertwined components, tested across four different
maps, underscore our approach’s adaptability and precision.

REFERENCES

[1] https://theclassytim.medium.com/robotic-path-planning-rrt-and-rrt-
212319121378

[2] N. J. Sanket, ”Trajectory and Motion Planning,” RBE595-F02-ST:
Hands-On Autonomous Aerial Robotics, Class 8, [Worcester Polytechnic
Institute], [2023].



Fig. 1. Trajectory for the first map



Fig. 2. Plot for the first map



Fig. 3. Control plots for map 1



Fig. 4. Trajectory for the second map



Fig. 5. Plot for the second map



Fig. 6. Control plots for the second map



Fig. 7. Trajectory for the third map



Fig. 8. Plot for the third map



Fig. 9. Control plots for the third map.



Fig. 10. Trajectory for the fourth map



Fig. 11. Plot for the fourth map



Fig. 12. Control plots for the fourth map.

Fig. 13. Explored tree for fourth map with the path taken in the tree.


	Introduction
	Map Reader
	RRT* path planner
	Trajectory generation
	Results
	Conclusion
	References

