
Team Apache Stealth:
Tree Planning Through The Trees!

Ankit Mittal
Department of Robotics Engineering

Worcester Polytechnic Institute
Email: amittal@wpi.edu

Rutwik Kulkarni
Department of Robotics Engineering

Worcester Polytechnic Institute
Email: rkulkarni1@wpi.edu

Abstract—(1 Late day) This paper delves into
the practical implementation of the RRT* algorithm
within a known 3D environment, with the primary
objective of navigating a drone from an initial starting
position to a predefined goal position. The paper not
only elucidates the application of the RRT* algo-
rithm but also addresses the critical post-processing
step of path smoothing. This is achieved through
the utilization of a trajectory generation algorithm,
which optimizes the path obtained from the RRT*
algorithm. Furthermore, the paper extends its focus
to the development of a controller system tailored for
the drone, enabling it to faithfully follow the opti-
mized trajectory path. The comprehensive approach
presented in this research paper, spanning from path
planning with RRT* to trajectory generation and
controller design, underscores its practical significance
in the field of autonomous drone navigation within
complex 3D environments.

I. INTRODUCTION

The rise of autonomous drones has opened up
exciting possibilities across numerous fields. How-
ever, navigating these drones through complex 3D
environments demands advanced path planning and
control solutions. This paper tackles this challenge
by combining the RRT* algorithm for path plan-
ning, trajectory generation techniques, and a robust
controller system. Our focus is to guide a drone
from its initial position to a defined goal, ensuring
smooth, obstacle-avoiding trajectories and precise
control. We begin with RRT* as the foundation for
path planning, extending it to 3D environments. To
improve the generated path’s quality, we introduce
a trajectory optimization step.Crucially, we also
detail the development of a tailored controller for

the drone. This ensures the drone faithfully fol-
lows the optimized trajectory, even in unpredictable
conditions. Our holistic approach aims to enhance
autonomous drone navigation in intricate 3D spaces,
offering practical benefits across various real-world
applications. In the following sections, we delve
into our methodology, implementation, and results,
showcasing the effectiveness of our approach.

Link To Videos: Click Here

II. ENVIRONMENT SETUP(MAP READER IN
BLENDER)

As part of the initial setup, program needs to read
environmental data from a text file. This text file
should contain obstacle dimensions formatted in the
following manner.

Boundary:xmin ymin zminxmax ymax zmax

Block:xmin ymin zminxmax ymax zmax r g b

Here xmin ymin zmin represents the lower
left corner coordinates of the block/boundary and
xmax ymax zmax represents the upper right co-
ordinates of the block/ boundary. Script reads the
environment and plot it in the blender. And in block
r g b represents the rbg values of the block for color
coding.

https://drive.google.com/drive/folders/1UlyOgvXOGx2OZFz0Axd-yPNFN7Mmlum1?usp=drive_link


Map 1 - Train Set

Fig. 1: Environment Setup in blender

III. PATH PLANNER

The RRT* planning algorithm is employed for
path planning from the starting position to the
goal position. RRT* represents an enhanced and
optimized iteration of the original RRT algorithm.
In RRT random points are generated and linked
to the nearest accessible node. Before creating a
vertex, a check is performed to ensure that it is
positioned outside of any obstacles. Additionally,
when connecting the vertex to its nearest neighbor,
precautions are taken to avoid obstacles. The algo-
rithm terminates either when a node is generated
inside the desired goal region or when a predefined
limit is reached.The basic principle of RRT* is the
same as RRT, but two key additions to the algorithm
result in significantly different results. In the RRT*
algorithm, each vertex maintains a record of the
distance it has covered relative to its parent vertex,
which is denoted as its ”cost.” Once the nearest
node within the graph is identified, the algorithm
looks at a set of nearby vertices within a fixed radius
around the newly created node. If a vertex with a
lower cost than the closest proximal node is discov-
ered, it replaces the proximal node. This feature has
a noticeable impact on the tree structure, resulting
in the emergence of fan-shaped branches and elimi-
nating the cubic structure seen in the standard RRT
algorithm. Another key enhancement introduced by
RRT* is the concept of tree rewiring. Once a vertex
has been linked to its most cost-effective neighbor,

the algorithm goes on to reevaluate the neighboring
vertices. It assesses whether rewiring a neighbor to
the recently added vertex would result in a reduction
in their cost. If such an improvement is observed,
the algorithm proceeds to rewire that neighbor to
the newly added vertex. This mechanism contributes
to creating smoother and more efficient paths in
the tree structure. In this project, we employ a
random number generator to determine positions
in space. However, to improve the efficiency of
our sampling strategy, we incorporate a heuristic
based on the goal position. This heuristic allows us
to bias the selection of random points towards the
vicinity of the goal. As a result, our tree expansion
predominantly occurs in the direction of the goal,
facilitating a more targeted exploration of the search
space.

The above alogorithm gives set of waypoints
from start position to the goal position. Then the
waypoints are passed through trajectory generator
for path smoothing.

Map 1 - Train Set

Fig. 2: Expanded RRT* Tree



Algorithm 1 RRT* Algorithm

V ← {xinit}; E ← ∅;
for i = 1 to n do

xrand ← SampleFreei;
xnearest ← Nearest(G = (V,E), xrand);
xnew ← Steer(xnearest, xrand);
if ObstacleFree(xnearest, xnew) then

Xnear ← Near(G = (V,E), xnew,
min(γ(log(card(V ))/card(V ))1/d, η));
V ← V ∪ {xnew};
xmin ← xnearest;
cmin ← Cost(xnearest)+
c(Line(xnearest, xnew));
for each xnear ∈ Xnear do

if CollisionFree(xnear, xnew) ∧
Cost(xnear) + c(Line(xnear, xnew)) < cmin then

xmin ← xnear;
cmin ← Cost(xnearest)+
c(Line(xnearest, xnew));

end if
E ← E ∪ {(xnew, xnear)};
for each xnear ∈ Xnear do ▷ Rewire

if CollisionFree(xnear, xnew) ∧
Cost(xnew) + c(Line(xnear, xnew)) < Cost(xnear)
then

xparent ← Parent(xnear);
E ← E \ {(xparent, xnear)}∪
{(xnew, xnear)};

end if
end for

end for
end if

end for
return G = (V,E)

Map 1 - Train Set

Fig. 3: Path Generated

IV. TRAJECTORY GENERATION

The approach used for trajectory generation uti-
lizes polynomial interpolation to smoothly connect
a series of waypoints, ensuring continuous motion
profiles with respect to position, velocity, and ac-
celeration in all directions. The trajectories are then
visualized using Matplotlib, allowing for an in-
depth analysis of the generated motion profiles.

We use the following Polynomial Equation for
Trajectory Generation:

q(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5

where:
q(t) −→ position at time t
a0, a1, a2, a3, a4, a5 are coeffs. of the polynomials

This polynomial equation is used to calculate
position, velocity, and acceleration profiles for each
segment of the trajectory. Quintic polynomials are
used to interpolate between waypoints. You need to
define the initial and final positions, velocities, and
accelerations for each segment of your trajectory.
These waypoints serve as boundary conditions that
the quintic polynomial must satisfy.

The quintic polynomial equation has six
coefficients: a0 through a5. These coefficients
need to be determined to create the desired
trajectory. To do this, set up a system of equations
based on the boundary conditions. For a single
segment of the trajectory between time t0 and tf ,
you can use the following equations:

Position Boundary Conditions:

q(t0) = a0 + a1t0 + a2t
2
0 + a3t

3
0 + a4t

4
0 + a5t

5
0 = p0

(1)

q(tf ) = a0 + a1tf + a2t
2
f + a3t

3
f + a4t

4
f + a5t

5
f = pf
(2)

Velocity Boundary Conditions:

q′(t0) = a1 + 2a2t0 + 3a3t
2
0 + 4a4t

3
0 + 5a5t

4
0 = v0

(3)

q′(tf ) = a1 + 2a2tf + 3a3t
2
f + 4a4t

3
f + 5a5t

4
f = vf

(4)



Acceleration Boundary Conditions:

q′′(t0) = 2a2 + 6a3t0 + 12a4t
2
0 + 20a5t

3
0 = a0

(5)

q′′(tf ) = 2a2 + 6a3tf + 12a4t
2
f + 20a5t

3
f = af

(6)

These equations constitute a system of six equations
with six unknowns (a0 to a5). We can use Linear
Algebra Solvers to determine the coefficients of
the quintic polynomial by solving this system.

Once we have determined the coefficients (a0
through a5), we substitute them into the quintic
polynomial equation to calculate position, velocity,
and acceleration values at any time t within the
segment.

Quintic polynomials offer control over position,
velocity, and acceleration. To regulate the time
taken to traverse a segment, we linearly interpolate
time between t0 and tf according to the desired
duration. These time values can be either hardcoded
or dynamically adjusted based on user-defined
conditions, such as distance as a heuristic.

For multiple segments in the path generated
by our planning algorithm, we ensure continuity
by matching the final conditions (position, velocity,
and acceleration) of one segment with the initial
conditions of the next. The way we do this is
summarized below:

• A loop iterates through pairs of waypoints,
each representing the start and end points of
a trajectory segment. It establishes the initial
and final conditions for each segment.

• For the first segment, both initial velocity and
acceleration are set to zero. For subsequent
segments, the initial conditions are determined
based on the final values of the previous seg-
ment, ensuring smooth transitions.

• The final segment’s velocity and acceleration
are set to zero as there is no subsequent
segment. Velocity is calculated as the change
in position divided by the segment duration,
and acceleration as the rate of change of ve-

locity, divided by the segment duration, for all
segments except the last one.

V. CONTROLLER DESIGN AND TUNING

A. Cascaded PID Controller

The provided controller is a cascaded PID
(Proportional-Integral-Derivative) controller
for a quadrotor, which is a popular control
architecture(used by PX4) for stabilizing and
controlling the flight of drones. This cascaded
design consists of multiple PID controllers stacked
in a hierarchical manner.

Position Controller : The outermost layer
of the cascaded controller focuses on position
control in NED (North-East-Down) coordinates.
It uses three PID gains to regulate the quadrotors
position’s along X,Y and Z direction. These
controller take the desired position waypoints from
our trajectory and current position state of our
drone as input and compute the desired velocity
setpoints to reach the desired position.
Velocity Controller : The next layer of the
controller focuses on velocity control in NED
coordinates. It adjusts the quadrotor’s velocity
based on desired velocity setpoints. Three
additional PID gains are used to control the
quadrotor’s velocity along the X, Y, and Z axes.
These controllers take the desired velocity setpoints
and the current velocity as input and calculate
acceleration setpoints to achieve the desired
velocity.
Angular Rate Controller : The innermost
layer of the controller deals with controlling the
quadrotor’s angular rates. It uses three PID gains to
regulate the quadrotor’s roll, pitch, and yaw rates.
These controllers take the desired angular rates
and the current angular rates as input and compute
torque commands to achieve the desired rates.

B. PID Gain Tuning Methodology

The cascaded control architecture divides the
control process into multiple layers and dimensions,
each with its set of PID gains. Managing and fine-
tuning all these gains concurrently can be complex
and time-consuming. This issue was addressed by



sequentially tuning the controller starting from
the inner-most layer. By first focusing on the
innermost layer (angular rate) and progressively
moving outward to velocity and position control, it
becomes more manageable to isolate and fine-tune
each layer’s gains.

Angular Rate Controller : This controller was
already tuned in the starter code provided. Starting
with this controller is crucial for maintaining
stability and responsiveness in flight.

Velocity Controller : The focus then shifts
to the velocity controller. Tuning the velocity
controller, especially in the Z-axis (vertical
control), helps the quadrotor achieve smooth and
precise motion in terms of ascent and descent.
Once the Z-axis velocity controller is tuned, it
becomes easier to tune the X and Y-axis velocity
controllers, which control horizontal motion. The
PID gains used for this controller are :
Velocity in X-direction - P: 1.0, I: 0.1, D: 0.05
Velocity in Y-direction - P: 4.0, I: 0.1, D: 0.01
Velocity in Z-direction - P: 20.0, I: 0.0, D: 0.05

Position Controller : Finally, tuning the position
controller in the Z-axis and then the X and Y axes
follows a logical progression. This approach builds
on the foundation of well-tuned velocity control
to achieve accurate position control. Tuning the
position controller ensures that the quadrotor can
accurately reach and maintain desired waypoints in
space. The PID gains used for this controller are :
Position in X-direction - P: 1.0, I: 0.0, D: 0.1
Position in Y-direction - P: 1.0, I: 0.0, D: 0.1
Position in Z-direction - P: 1.0, I: 0.0, D: 0.1

VI. RESULTS

The algorithm’s performance was evaluated by
training it on one map and testing it on two
separate test maps. During the testing phase, the
algorithm successfully guided the drone along a
path while avoiding obstacles. This achievement
was confirmed through visual inspection and further
validated by comparing the extracted plots of the
drone’s current and desired states.

A. Results

1) Figure 4,5,6 - Positions in 3D (Desired Path
v/s Actual Path Positions)

2) Figure 7,8,9 - Velocity Trajectory Comparison
for Train and Test Sets w.r.t Time

3) Figure 10,11,12 - Position Trajectory Com-
parison for Train and Test Sets w.r.t Time



B. Path Comparison in 3D

Map 1 - Train Set

Fig. 4: Comparison of Actual Vs Desired path for Map 1

Map 2 - Test Set

Fig. 5: Comparison of Actual Vs Desired path for Map 2

Map 3 - Test Set

Fig. 6: Comparison of Actual Vs Desired path for Map 3



C. Velocity Trajectory Comparison

Map 1 - Train Set

Fig. 7: Comparison of Actual Vs Desired Velocities for Map 1

Map 2 - Test Set

Fig. 8: Comparison of Actual Vs Desired Velocities for Map 2



Map 3 - Test Set

Fig. 9: Comparison of Actual Vs Desired Velocities for Map 3

D. Position Trajectory Comparison

Map 1 - Train Set

Fig. 10: Comparison of Actual Vs Desired Positions for Map 1



Map 2 - Test Set

Fig. 11: Comparison of Actual Vs Desired Positions for Map 2

Map 3 - Test Set

Fig. 12: Comparison of Actual Vs Desired Positions for Map 3



VII. OBSERVATIONS

1) PID Values only work for a range of velocity
values and they are tedious to tune. More
Robust control strategies possible for drone
flight control should be employed. That is
currently if we want the drone to go at higher
velocities, need to fine-tune the PID Values
again.

2) This drone assumes a perfect knowledge of
the environment which is seldom the case for
real robots. Therefore, the current iteration of
this implementation realies too much on the
perception module to be perfect. It has to be
improved to take into consideration a certain
amount of uncertainty.

VIII. CONCLUSION

Therefore, a simple Motion Planning and Con-
trols Module of Drone was implemented in a
simulation environment(Blender) and the following
things were implemented :

• A Map reader Function using Blender API.
• Motion Planning in 3D Environment using

RRT* with Collision Checking
• Trajectory Generation using Quintic Splines.

IX. ACKNOWLEDGMENT

The author would like to thank Prof. Nitin Sanket
and the TA of this course RBE595.

REFERENCES

[1] Karaman, Sertac, and Emilio Frazzoli. ”Sampling-based
algorithms for optimal motion planning.” The international
journal of robotics research 30, no. 7 (2011): 846-894. Link

[2] Blender Plot API. Link

https://doi.org/10.1177/027836491140676
https://github.com/Linusnie/blender-plots

	Introduction
	Environment Setup(Map Reader in Blender)
	Path Planner
	Trajectory Generation
	Controller Design and Tuning
	Cascaded PID Controller
	PID Gain Tuning Methodology

	Results
	Results
	Path Comparison in 3D
	Velocity Trajectory Comparison
	Position Trajectory Comparison

	Observations
	Conclusion
	Acknowledgment
	References

