
Autonomous navigation of drones in known
environment

1st Venkateshkrishna
Masters in Robotics

Worcester Polytechnic Institute
Worcester, MA 01609
vparsuram@wpi.edu

2nd Athithya, Lalith
Masters in Robotics

Worcester Polytechnic Institute
Worcester, MA 01609

lnavaneethakrishnan@wpi.edu
using one late day

3rd Gampa, Varun
Masters in Robotics

Worcester Polytechnic Institute
Worcester, MA 01609

vgampa@wpi.edu

Abstract—This project focuses on creating an autonomous
quadrotor navigation system within a known 3D environment
through simulation-based experimentation. The objectives en-
compass developing robust path planning algorithms, including
RRT-connect*, for collision-free trajectory generation, as well
as fine-tuning the control stack to ensure stable and precise
execution.To enable autonomous navigation in complex terrains,
with RRT-connect* serving as a foundational step towards
achieving this goal.

I. INTRODUCTION

In this project, we present a comprehensive implementation
approach comprising four fundamental components. Firstly,
we introduce a Map/Environment reader and visualization
method to interpret the pre-mapped 3D environment. Secondly,
we detail the integration of an RRT* (Rapidly-exploring
Random Tree Star) path planner, aimed at generating collision-
free paths connecting the predefined start and goal positions.
Next, we discuss the development of a trajectory planner
designed to refine the path produced by the RRT-connect*
algorithm, ensuring the creation of dynamically feasible tra-
jectories. Lastly, we delve into the implementation of a PID
(Proportional-Integral-Derivative) controller, responsible for
guiding the quadrotor along the generated trajectory from start
to goal while maintaining collision avoidance. This project’s
multidisciplinary approach seeks to enable autonomous nav-
igation within a known 3D environment, encompassing path
planning, trajectory optimization, and control mechanisms.

II. GENERATION OF MAP

The map provided for this project was defined by a col-
lection of cuboids, each serving a specific purpose within
the environment. The initial cuboid served as the boundary,
outlining the limits of the drone’s navigable area. Subsequent
cuboids were utilized to represent obstacles within the envi-
ronment. Each cuboid was characterized by two key points:
the lower-left vertex and the upper-right vertex, defining its
spatial dimensions. To facilitate visualization and mapping,
Blender’s primitive cube function was employed, generating a
comprehensive representation of the environment. This map,
consisting of boundary constraints and obstacle delineations,

served as the foundation for subsequent path planning, tra-
jectory optimization, and control system development for
autonomous quadrotor navigation.

III. SAMPLING BASED PLANNING USING RRT*

RRT* is a sampling based algorithm in which the search
tree rapidly expands from a start node. Subsequent points are
randomly generated in the search space. Then the nearest node
is found in the graph to the random point. A new node is
generated at fixed step distance from the nearest point in the
direction of the random point. If this node doesn’t collide with
any obstacle and the line joining this point and the nearest node
is not passing through any obstacle, then this node is added as
a vertex to the graph and the edge between the nearest node
and new node is created and added to the graph. The method
to check for collisions is explained in the subsequent section.
In RRT* further this graph is optimized as per a heurestic cost
so that an optimal path within the graph is selected at every
iteration. While this slows down the path planning algorithm,
the obtained path is generally much smoother. To speed up the
path planning algorithm connect strategy was used. In RRT*
generally a single node is added to the graph in every iteration.
In our variation of RRT* multiple vertices are generated at
fixed step size which are added based on the line connecting
the nearest node to the xrand until an obstacle is identified at
which stage points are no longer added. This is called as the
connect strategy which is explained in 2. The entire algorithm
is explained in 1 .This connect algorithm replaces Steer in the
standard RRT* algorithm. We used the step size as 0.6m. Also
we generated more points even after the path is found to refine
the same.

IV. COLLISION CHECKING

To check for collisions with an obstacle. First we inflated
the obstacle by the largest dimension of the drone, which was
0.4m. Then we treated the drone as a point object. To check for
collisions we simply checked if each dimension of the center
of the drone would be between the extreme points provided for
each block. Hence to check for collision in the path between
two vertices, we just checked for collision on multiple evenly



Algorithm 1 RRT* Algorithm
1: V ← {xinit};E ← ∅;
2: for i = 1 to n do
3: xrand ← SampleFreei;
4: xnearest ← Nearest(G = (V,E), xrand);
5: Xnew ← Connect(xnearest, xrand);
6: for all xnew ∈ Xnew do
7: if ObstacleFree(xnearest, xnew) then
8: xmin ← xnearest
9: cmin ← Cost(xnearest) + c(Line(xnearest, xnew));

10: V ← V ∪ {xnew};
11: for all xnear ∈ Xnear do
12: if CollisionFree(xnear, xnew)∧

Cost(xnear) + c(Line(xnear, xnew)) < cmin then
13: xmin ← xnear
14: cmin ← Cost(xnear) + c(Line(xnear, xnew))
15: end if
16: end for
17: E ← E ∪ {(xmin, xnew)}
18: cnear ← Cost(xnear)
19: for all xnear ∈ Xnear do
20: if CollisionFree(xnew, xnear)∧

Cost(xnew) + c(Line(xnew, xnear)) < cmin then
21: xparent ← Parent(xnear);
22: E ← (E \ {(xparent, xnear)}) ∪ {(xnew, xnear)};
23: end if
24: end for
25: end if
26: end for
27: end for
28: return G = (V,E);

Algorithm 2 Connect algorithm
1: Xnew ← ∅;
2: xrand ← SampleFreei;
3: xnearest ← Nearest(G = (V,E), xrand);
4: xnew ← Steer(xnearest, xrand);
5: while ObstacleFree(xnew)∨ Distance(xnew, xrand) do
6: Xnew ← Xnew ∪ xnew
7: xnew ← Steer(xnew,xrand)
8: end while
9: return Xnew

spaced points on the line between two vertices. The points on
the line were spaced by 0.2m.

V. TRAJECTORY GENERATION

Using the waypoints generated by RRT*, we need to
compute trajectory which is the desired position, veloc-
ity,acceleration and yaw. First the trajectory obtained from
RRT* is refined. For this, we check, starting from the first
point if the line joining this point and the next point in the
waypoint list are is collision free, if yes then the next point
is removed from the waypoints list. This is repeated until we

encounter a case wherein we observe a collision in the line
joining start point and the next point. When that occurs, the last
removed point is re inserted and we repeat the same procedure
as above, with the reintroduced point taking the place of the
start point. Next to generated the trajectory between the refined
way points we used a 7th degree polynomial fit between
every two points. Given a time difference to reach from one
point to the next and the boundary conditions we can obtain
the coeffecients of all the 7th degree polynomial. To find
the time instants for every two adjacent points we used an
optimizer. The cost for the optimizer is a function of the
time instants. More specifically based on the time instants,
the polynomials are generated and from them, snap of the
polynomial is calculated which is part of the cost, along with
the time difference between two points. We used the COBYLA
optimizer to optimize the trajectory. To add in the constraints
of maximum velocity, we added the condition of minimum
time required to traverse between two points such that it would
result in feasible velocity.

VI. CONTROLLER DESIGN

A. PID Controller Design

Thee controller present is a cascaded PID. It has three
loops. The outermost loop is the position controller. It takes
in the desired position and the current position and gives the
velocity adjustment needed. The inner loop is the velocity
controller. It’s reference value is a combination of feedforward
and feedback. That is, the reference velocity for the controller
is the sum of desired veloctiy and the adjustment given by the
position controller. This gives the desired acceleration and that
is converted to the desired body velocity rates. The desired
acceleration also gives the thrust required. These values are
then sent as reference values for the innermost PID loop which
is the attitude controller, which provides the torques in the
body frame. Then using the thrust and the torques calculated,
These values are fed into the dynamics for the drone to move.

B. Position Controller Gains

We assumed that the drone is symmetric about the z-axis
and hence the gains for x and y axis would be the same. To
tune these gains, first we set the desired trajectory as 0,0,0
wherein the drone would hover at the origin. We even had to
tune the velocity controller for the same.

C. Velocity Controller Gains

We further fine tuned the velocity controller by using the
sample trajectory which was given to us, which was a helical
path.

VII. RESULTS

We have tested this algorithm for autonomous navigation
in a known environment using blender simulation. The map
and inflated obstacles are seen in 1. Next, the RRT tree can be
seen in 2. The optimal path from RRT along with the trajectory
generated by the optimizing algorithm is seen in 3. To evaluate
our controller’s performance, we also plotted the actual path



taken by the drone as can be seen in 4. You can see that
the RRT tree very quickly expands into the entire navigatable
area. And the trajectory generated is very smooth and passes
through the points given by RRT* which are highlighted in
green. It can also be noticed how the trajectory demands the
drone to speed up and slow down, by looking at the spline in
the figure and videos attached. Finally we can also see that
the controller is able to track the trajectory pretty well.



Fig. 1. Inflated environment



Fig. 2. RRT tree



Fig. 3. Optimal path to goal (green) and trajectory(blue)



Fig. 4. Path followed by the drone



VIII. VIDEOS

The videos of autonomous navigation in different environ-
ments can be found at videos

IX. CONCLUSION

In this project we immplemented an autonomous stack to
control a drone in a known environment. The stack was imple-
mented on python and tested in blender simulation setup. Our
optiimzed stack is able to generate the path and trajectories
quickly, as well as making sure that the drone is safe and able
to get to the goal quickly. Finally the gains of the controller
are fine tuned to be able to track the desired trajectory.

REFERENCES

[1] RRT Star: link
[2] Trajectory Optimization: link

https://drive.google.com/drive/folders/1AhC6xZUfpSmsIJFBPLP2hZ7Jl_UTd4zb?usp=sharing
https://arxiv.org/abs/1105.1186
https://github.com/Bharath2/Quadrotor-Simulation/tree/main

	Introduction
	Generation of Map
	Sampling based planning using RRT*
	Collision Checking
	Trajectory Generation
	Controller Design
	PID Controller Design
	 Position Controller Gains
	Velocity Controller Gains

	Results
	Videos
	Conclusion
	References

