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Abstract—This project presents implementation of Motion
Planning and Controller Tuning for the DJI Tello quadrotor on
a Blender Simulation environment. It consists 4 parts - map
reading, path planning, trajectory generation and controller
tuning. The quadrotor is tuned to navigate from the start
position to the goal position through a pre-mapped or known
3D environment.

I. ENVIRONMENT

The DJI Tello drone and trajectory visualization is per-
formed in a Blender environment with Python scripting. Sam-
ple maps are provided as ”mapx.txt” file and are used for
testing the algorithm and controller. :

Fig. 1. Sample Environment

II. IMPLEMENTATION

A. Reading and Rendering the Map

We are considering the maps described in the ”.txt” file
provided to render our environment in blender. It contains
the coordinates of the boundaries and the block obstacles that
exist within the environment of the drone. These obstacles are
considered to be bloated when trying to calculate the trajectory.

These are rendered in blender using the functions described
in the ”map.py” code. The waypoints and trajectory of the
final path are also similarly rendered.

B. Implementation of Path Planner

Rapidly Exploring Random Trees - Star (RRT*)

The algorithm attempts to find a path from a start point
to a goal point while avoiding specified obstacles, expanding
a tree of paths across the search space until the goal is reached.

Deeper Look

Tree Expansion: The algorithm iteratively expands the
tree from the start position by performing the following steps
for a specified number of iterations numNodes:

1. Random Sampling: Generate a random point in the
search space(p1)

2. Find Nearest Node: Find the closest node(p2) to
the randomly sampled point(p1) from the existing nodes.

3. Steering: Generate a new node(p3) by steering from
the nearest node(p2) towards random node p1(by some
pre-defined distance or until p1 is reached).

4. Collision Check: Verify that the path from closest
node(p2) to new node(p3) doesn’t intersect with any
obstacle.If not p3 is a valid node

Node Addition: Optionally, the algorithm explores if
p3 can be connected to other nearby nodes in a manner that
might provide a lower-cost path.
Rewiring: It checks other nodes and if a path from p3 to
another node is shorter than the existing path to that node
(and doesn’t intersect with obstacles), the parent of that node
is changed to p3.

5. P3 is valid: A new node p3 is added to the tree,
with its parent set to p2 and its cost calculated as the distance
from p2 plus the cost of p2

6. P2 is within a certain distance from the goal: it
checks whether a direct path from p2 to the goal is free from
obstacles. If it is, it adds the goal to the tree, connected to
p3, and terminates the algorithm.

The algorithm is implemented in 3D Space. Distances
and we chose the following parameters:

a. The minimum acceptable distance to goal as 1.0
b. The number of nodes being sampled as 5000.
c. Neighbor search radius as 50
:



Fig. 2. Pseudocode for RRT*

C. Trajectory Generation

1) Fitting a Spline:

• We are creating quintic trajectories. We are
considering pairs of waypoints, taking the segment
length and dividing by average velocity to find
the time taken to traverse between the individual
segment lengths. Acceleration at the waypoints are
always zero

Position, Velocity and Acceleration Trajectories
are given by:
x = a0 + a1t+ a2t
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• Bounding conditions for the quintic trajectories
are defined as such for the way-points:
1. Start and the First way-point: the initial veloc-
ity and acceleration are zero, while the final velocity
is the assumed average velocity(v).
2. Intermediate way-points: The velocity profiles
are such that the initial and final velocity are both
set to v.
3. Final way-point: The initial velocity is v and the
final velocity and acceleration is zero.

• Through solving the equations above we get the
coefficients for the spline equations and the time
stamps corresponding to the positions in the path.
The resultant spline is pruned and optimized.

2) Pruning the Trajectory:

3) The waypoints generated previously are checked for
collision with our obstacles and the unnecessary

waypoints are eliminated.

4) Smoothing the Trajectory:

We are performing gradient descent smoothing The
path (a sequence of points) by iteratively adjusting each
point (except for the first and the last ones) based on its
original position and the positions of its neighbors. The
adjustment is governed by two weights (weight data and
weight smooth) and continues until the total change for
all points in one iteration is less than a defined tolerance.

Deeper Look: In repeated cycles, every point (except the
first and last) is nudged: Partly toward its original position
in the un-smoothened path. Partly toward the average of its
neighbors in the smoothed path. These nudges continue until
the points stop moving significantly (i.e., total movement
across all points is below a tiny threshold).

D. Controller Strategy and Tuning Gains

The quadrotor is tuned to follow the desired trajectory
generated from the path planned by RRT* algorithm without
collisions. The controller designed for the quadrotor is a
cascaded controller with outermost loop as the position
controller and the penultimate loop as the velocity controller.
The position controller uses PID controller with 3 sets of
gains for x,y and z for a stable position control for positioning
the quadrotor at desired locations. The velocity controller
again uses PID controller with 3 sets of gains.

The position control loop and the velocity control loop are
tuned individually with the given sample trajectory file with
position, velocity and acceleration values corresponding to
a helical trajectory. And the tuned parameters are verified
with few more trajectory files to check the hovering of
the quadrotor at a fixed location. The results of the tuned
controller with the desired and actual positions, velocities are
shown in the plots below.

The gains tuned are,shown in TABLE 1

TABLE I
PID CONTROLLER PARAMETERS

Parameter Kp Ki Kd

position x 1 0.1 0
position y 1 0.1 0
position z 1 0 0
velocity x 1 0 0
velocity y 1 0 0
velocity z 3 0.3 0.1

PID gains for X and Y directions are kept same as it is
a symmetric drone with same dynamics along both the axes.
And the velocity control loop is tuned first by keeping the
gains of the position control loop to 0 and considering one
gain at a time starting with Kp followed by Ki and then Kd.



Fig. 3. 3D Trajectory



III. RESULTS

The output from the train and test sets are shown below.

Fig. 10. Train Set: Map1

Fig. 11. Train Set: Map1
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Fig. 12. Train set Map1: 3D Trajectory



Fig. 19. Train Set: Map4

Fig. 20. Train Set: Map1



Fig. 21. Train set Map4: 3D Trajectory



Fig. 28. Test Set: Map3

Fig. 29. Train Set: Map1

Fig. 30. Test set Map3: 3D Trajectory



Fig. 37. Test Set: Map2

Fig. 38. Train Set: Map1



Fig. 39. Test set Map2: 3D Trajectory
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