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Abstract—This project presents an approach for attitude es-
timation from a 6-DOF IMU sensor using Unscented Kalman
Filter (UKF). The estimation is then compared to the base values
provided from a Vicon motion tracking system.

I. PROBLEM STATEMENT

The aim of this project is to estimate the attitude from the
data taken from an ArduIMU+ V2. For this we will be using
the Unscented Kalman Filter (UKF) to non-linearly estimate
the attitude. The calculated attitude for all the readings are
then compared to the ground truth data captured from a Vicon
motion capture module.

II. READING THE DATA

The data provided to us was the raw IMU readings stored
in a matrix format:

[ax ay az ωz ωx ωy ]T (1)

But the values provided are not in physical units so we
converted these values.
For accelerometer:

ãx = (ax ∗ sx + ba,x) ∗ g (2)

where, ãx is the value of ax in ms−2, ba,x is the bias & sx
is the scale factor for accelerometer and were provided to us.
For gyroscope:

ω̃ =
3300

1023
× π

180
× 0.3× (ω − bg) (3)

where, ω̃ is the value of ω in rads−1, bg is the bias.
The bias for gyroscope was calculated using the formula:

bg =

∑100
n=1 ω

100
(4)

III. UNSCENTED KALMAN FILTER

The UKF operates on a probability distribuition in the 7-
dimensional state vector space.

x =



q0
q1
q2
q3
ωx

ωy

ωz


(5)

where,[q0, q1, q2, q3] is a unit quaternion & ωx, ωy and ωz are
the gyroscope measurements.
We first select a few sigma points from the priori state
vectors and transform them through a transformation function
f which is like a prediction of the points in next instance. All
the converted sigma points are then used to calculate a new
gaussian distribution with a new mean and covariance which
provides us with the estimate of new state space vector.

A. Initial values

For this project we assumed the IMU to be at rest initially
and thus initial state vector as:

x0 =
[
1 0 0 0 0 0 0

]T
(6)

The initial covariance matrix is assumed as:

P0 =


0.5 0 0 0 0 0
0 0.5 0 0 0 0
0 0 0.5 0 0 0
0 0 0 0.5 0 0
0 0 0 0 0.5 0
0 0 0 0 0 0.5

 (7)

The measurement noise is modelled as:

R =


10 0 0 0 0 0
0 10 0 0 0 0
0 0 10 0 0 0
0 0 0 0.5 0 0
0 0 0 0 0.5 0
0 0 0 0 0 0.5

 (8)

The process noise is modelled as:

Q =


105 0 0 0 0 0
0 105 0 0 0 0
0 0 105 0 0 0
0 0 0 0.5 0 0
0 0 0 0 0.5 0
0 0 0 0 0 0.5

 (9)

B. Sigma points

Any ith Sigma point is given by:

Xi = x̂k−1 +Wi (10)



or
Xi =

[
qk−1qW
ω⃗k + ω⃗W

]
(11)

where, x̂k−1 is the state at previous instance & Wi is the
disturbance of sigma points given by:

Wi = columns(±
√

n(Pk−1 +Q)) (12)

where, Pk−1 is the covariance matrix of previous instance.

C. Process model

The sigma points X is used for prediction step. We convert
sigma points to another set of column vectors (state vectors
projected ahead in time) Y as follows:

Y⟩ = A(X⟩, 0) (13)

In out case for attitude estimation, the function A is used
to incorporate additional rotation in timestep ∆t. This is
equivalent to using gyroscopic angle prediction by adding and
ω∆t to previous step estimates. This is done using quaternion
representation of angle estimates and vector ω∆t.

Yi =

[
qk−1qWq∆
ω⃗k + ω⃗W

]
(14)

q∆ =
[
cos( |w⃗k−1|∆t

2 ), w⃗k−1

|w⃗k−1|sin(
|w⃗k−1|∆t

2 )
]T

(15)

The angular velocity component of Y is same as sigma
points X . The quaternion component of Y is equivalent to
quaternion composition (multiplication) of quaternion compo-
nent of X with quaternion conversion of vector ω⃗∆t.

D. Mean computation

To find mean of state prediction and covariance prediction
µ̄t and Σ̄t we use gradient descent. The state prediction mean
µ̄t consists of quternion component of angle prediction and
angular velocity components as follows:

µ̄t =
[
q̄t, ω̄t

]T
(16)

The angular velocity mean is mean of angular velocity com-
ponents of state prediction vectors (ωi) from set Y as follows:

ω⃗ =
1

2n

2n∑
i=1

ωi (17)

To find the quaternion component, we use internal gradient
descent as shown in Fig1. 1.

E. Priori State Vector Covariance

The prediction state vector covariance Σ̄t is calculated as
follows:

P̄ =
1

2n

2n∑
i=1

W′(W′)T (18)

Here,

W̄ ′ =

[
r⃗W ′

ω⃗W ′

]
(19)

Fig. 1. Gradient Descent Algorithm for quaternion mean computation

r⃗W ′ = qi ¯q−1 (20)

ω⃗W ′ = ω⃗i − ¯⃗ω (21)

This priori state covariance matrix estimtion completes pre-
diction model/ process model. Now we perform measurement
update as explained in subsequent sections.

F. Measurement Model

For measurement model, we convert the future projected
state vectors Y to projected measurement vectors Z as follows:

Zi = H(Xi, 0) = H(Yi, 0)

For our model, the measurement model is defined as follows;

Zi =

[
q−1
i gqi
ω⃗k

]
(22)

Using the measurement model, we find the measurement
estimation covariance matrix and cross correlation matrix as
follows:

Pvv =
1

2n

2n∑
i=1

[Zi − z̄k][Zi − z̄k]
T
+R (23)

Pxz =
1

2n

2n∑
i=1

[Yi −ˆ̄µk][Zi − z̄k]
T (24)

G. Kalman Gain and Measurement Update

Using the covariance matrices above, we find Kalman gain
and perform measurement update as follows:

K = ΣxzΣ
−1
vv (25)

Posteriori estimate is computed as follows:

x̂k =¯̂xk +Kkvk (26)

The covariance matrix is updated as follows:

Pk = P̄k −KPvvK
T
k (27)

This step completes the state estimation using Unscented
Kalman Filter for kth step. This is repeated for all timesteps
and the results are shown below.



IV. OBSERVATIONS AND TUNING

To get good results with UKF, we needed to manually tune
the values of Process Noise matrix Q and Measurement Noise
Matrix R. Depending on the values set for both these matrices,
the results are very drastic. For correct values of Q and R, the
resulting estimates of RPY angle follow ground truth closely
for roll and pitch. Due to computational inaccuracies, we
were unable to produce correct outputs for yaw estimates. We
observed that if the diagonal values of matrix Q are very small
e.g. diag[0.6, 0.6, 0.6, 0.01, 0.01, 0.01], we observe lot of
fluctuations in the estimates. But as we increase the uncertainty
values, i.e. we increase diagonal values for Q (especially first
3 values corresponding to the angle values), we get better
estimates as shown in results. We found that Q = diag([105,
105, 105, 0.5, 0.5, 0.5]) to be good estimate for process noise.
If we increase the values of first 3 angles by a lot, e.g. ¿
150, we get poor performance. This shows that UKF is very
sensitive to process noise estimates for quaternion part of state
vector. We also observed that the max iteration value does not
affect much beyond a max iter value of 500. Usually when the
initial guess for gradient descent is ’good’, we get convergence
very quickly. The higher values of max iter results in slower
execution times as some data points require full number of
iterations for convergence.

V. ROTPLOT VIDEO LINK

Google Drive link

VI. RESULTS

The plots for train dataset 1 to 6 are shown in Figs. 2, 3,
4, 5, 6, 7
From the results, we can see that the roll and pitch values
follow the Vicon values closely in most og the train datasets,
whille in a few cases they follow the same trend as Vicon
angle values.
The plots for test dataset 7 to 10 are shown in Figs. 8, 9, 10
& 11

https://drive.google.com/drive/folders/1Z4VuMsRVFYgle6-ZqzPH0Ay6heyUWkAn?usp=sharing


Fig. 2. Euler angle plots for training set 1 (all the implemented filters)



Fig. 3. Euler angle plots for training set 2 (all the implemented filters)



Fig. 4. Euler angle plots for training set 3 (all the implemented filters)



Fig. 5. Euler angle plots for training set 4 (all the implemented filters)



Fig. 6. Euler angle plots for training set 5 (all the implemented filters)



Fig. 7. Euler angle plots for training set 6 (all the implemented filters)



Fig. 8. Euler angle plots for test set 7 (all the implemented filters)



Fig. 9. Euler angle plots for test set 8 (all the implemented filters)



Fig. 10. Euler angle plots for test set 9 (all the implemented filters)



Fig. 11. Euler angle plots for test set 10 (all the implemented filters)



VII. PROBLEMS FACED

The tuning for Q and R matrices was challenging as the
filter is quite sensitive to the noise. During this project we
encountered the problem of not getting the desired euler angles
from the accelerometer which leads to some funky behavior
in the madgwick filter. This issue should be rectified in the
future assignments.
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