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Abstract—In this project attitudes are estimated for a given
IMU dataset. The orientations are found using four methods:
from only accelerometer measurements, from only gyroscope
measurements, through a complementary filter, and from a
Madgwick filter. The resulting estimates are plotted and com-
pared against the ground truth data from Vicon motion capture
system for training datasets. The approaches are plotted and
compared again for test datasets.

I. INTRODUCTION

The aim of the project is to implement four methods to
estimate the three dimensional orientation/attitude from the
data collected from a six degree of freedom Inertial Measure-
ment Unit (6-DoF IMU) sensor i.e., readings from a 3-axis
gyroscope and a 3-axis accelerometer. The raw acceleration
measurements are corrected and converted to SI units using
the bias and scale parameters given. The gyroscope bias is
estimated from the average of the initial gyroscope readings
and is then used to convert the raw sensor data to SI units.
Then attitudes need to be estimated from only accelerometer
data, only gyroscope data, a complementary filter, and a
Madgwick filter. The estimates from only gyroscope suffer
from drift due to error accumulation overtime as a result of
numerical integration. Accelerometer estimates are affected by
vibration and other external forces that causes translation. To
get better estimates a complementary filter is implemented
that combines both of the above estimates. To get even better
estimates a Madgwick filter is implemented which performs
the calculations using quaternions so that issues of singularity
associated with Euler angles are avoided. All the results are
then compared with the ground truth data from Vicon motion
capture system.

II. IMU AND VICON DATA PRE-PROCESSING

In this section the raw sensor data from accelerometer and
gyroscope are converted into physical values with correspond-
ing SI units.

A. Accelerometer

From the IMU data the first three values in each mea-
surement represent the accelerometer readings given as a =
[ax, ay, az]

T . To convert them to SI units (m/s2) the following
equation is used:

ãi = (ai ∗ si + bi,a) ∗ 9.81 (1)

Here i is the sample number of the data, si is the scale for
each axis, and bi,a is the accelerometer bias for each axis.

B. Gyroscope

From the IMU data the last three values in each mea-
surement represent the gyroscope readings and are given as
ω = [ωz, ωx, ωy]

T . To convert them to SI units (rad/s) the
following equation is used:

ω̃i =
3300

1023
× π

180
× 0.3× (ω − bi,g) (2)

Here bi,g is the gyroscope bias for each axis and is obtained by
taking the average of the first 200 readings of the gyroscope.

bi,g =
1

200

200∑
k=1

ωk (3)

C. Vicon data

The Vicon capture system measured the rotation matrix
at every instance. The ZYX Rotation matrix is converted to
roll, pitch, and yaw angles to for comparing them with the
estimates. Consider a single instance of ZYX rotation matrix
R as shown below:

R =

( r11 r12 r13
r21 r22 r23
r31 r32 r33

)
(4)

The Euler angles are then obtained as:

roll(ϕ) = arctan
r32
r33

(5)



pitch(θ) = arctan
−r31√
r232 + r233

(6)

yaw(ψ) = arctan
r21
r11

(7)

III. ATTITUDE FROM ACCELEROMETER

Attitude estimates from the accelerometer are obtained from
the projection of the acceleration vector with onto the IMU
body axis which are known from the gravity vector that is
pointing downwards (-Z direction). The angles are given by
the following formulas:

roll(ϕ) = arctan
ay√
a2x + a2z

(8)

pitch(θ) = arctan
−ax√
a2y + a2z

(9)

The estimates of yaw from this method are not perfect due
to symmetrical nature of Z-axis with gravity vector. But since
IMU is not perfectly vertical we can estimate yaw from the
following formula:

yaw(ψ) = arctan

√
a2x + a2y

az
(10)

IV. ATTITUDE FROM GYROSCOPE

From the gyroscope we get the body angular velocities
and the attitude estimates are obtained through the numerical
integration. Before doing the integration the body angular
velocities are converted to Euler angle rates. At every time
step during the numerical integration the conversion is done
using the following formula: ϕ̇

θ̇
ψ̇


ti

=

 1 sinϕ tan θ cosϕ tan θ
0 cosϕ − sinϕ
0 sinϕ/ cos θ cosϕ/ cos θ


ti

×

(ωx

ωy

ωz

)
ti

(11)
The Euler rates obtained from the above equation at every
time step are then used find the attitude estimates for the next
time step through the discrete numerical integration step shown
below:(

ϕ
θ
ψ

)
ti+1

=

(
ϕ
θ
ψ

)
ti

+

 ϕ̇
θ̇
ψ̇


ti

× (ti+1 − ti) (12)

During the integration for the initial step the initial value of
the estimate is obtained by taking the average of the first 200
estimates from the Vicon ground truth attitude as shown below:(

ϕ
θ
ψ

)
t0

=
1

200

200∑
k=1

xvicon (13)

V. ATTITUDE USING COMPLEMENTARY FILTER

The attitude estimates from accelerometer and the gyro-
scope each have complementary issues. The accelerometer
estimates are prone to noise and the gyroscope estimates suffer
from drift in the long term. These two estimates are combined
using low and high pass filters respectively to reduce the error
from individual estimates. First the raw sensor data obtained
from the accelerometer is sent through a low pass filter by
using the following equation to get new sensor values by
combining the present sensor value with previous value:

ˆat+1 = (1− n)× at+1 + n× ât (14)

And similarly the sensor data of gyroscope is sent through
high pass filter using the following equation:

ˆωt+1 = (1− n)ω̂t + (1− n)(ωt+1 − ωt) (15)

Here n is taken as 0.8 and the variable x̂ represents filtered
value. Then the filtered values are used to obtain the orien-
tation estimates which are fused using the following equation
to get the new estimates:

(
ϕ
θ
ψ

)
comp

=

( 1− α 0 0
0 1− β 0
0 0 1− γ

)
×

(
ϕ
θ
ψ

)
gyro

+

(α 0 0
0 β 0
0 0 γ

)
×

(
ϕ
θ
ψ

)
acc

(16)

Here the parameters α, β, and γ are chosen to be 0.8, 0.8, and
0.9 respectively.

VI. ATTITUDE FROM MADGWICK FILTER

The complimentary filter tries to fix the issues associated
with accelerometer readings and gyroscope by combining both
estimates in a linear manner. But since the estimates from
only accelerometer are not accurate due to the issues with
vector decomposition, complementary filter doesn’t capture
the ground truth properly. Additionally the usage of Euler
angles in the previous filters leads to the condition of Gimbal
lock or a singularity at certain angles. To avoid these issues and
get better estimates a Madgwick filter is implemented. This
filter utilises quaternions to represent the orientation and for
the below equations it should be noted that the scalar element
of the quaternion is the first element. For this project the initial
estimate of quaternion is found from the average of first 200
values of vicon data for train data and is assumed to be zero
for test data. Following are the steps followed to implement
the filter:

A. Estimates from accelerometer:

To get the attitude estimates from accelerometer, the prob-
lem is formulated as a optmization problem. A gradient
descent algorithm is used to find the estimate that minimizes
the loss function. The loss function here tries reduce the
difference between the measured acceleration and the attitude
estimate that rotates the gravity vector to point in the direction



of this measured acceleration vector. The following equations
describe the optimization problem:

argmin
q̂
f(q̂, ĝ, â) (17)

Where
f(q̂, ĝ, â) = q̂∗ ⊗ ĝ ⊗ q̂ − â (18)

Here q̂ is the unit quaternion estimate , q̂∗ is the conjugate of
q̂, ĝ = [0, 0, 0, 1]T is the unit gravity vector pointing down,
and â is the IMU measured accelerometer values.
The gradient of the function is shown below:

∇f( ˆqest,t, ĝ, ˆat+1) = JT ( ˆqest,t, ĝ)f( ˆqest,t, ĝ, ˆat+1) (19)

The function can be calculated as:

f( ˆqest,t, ĝ, ˆat+1) =

 2(q2q4 − q1q3)− ax
2(q1q2 + q3q4)− ay
2(0.5− q22 − q23)− az

 (20)

And the Jacobian is calculated as:

J( ˆqest,t, ĝ) =

(−2q3 2q4 −2q1 2q2
2q2 2q1 2q4 2q3
0 −4q2 −4q3 0

)
(21)

From this the update term is:

q∇,t+1 = −β ∇f( ˆqest,t, ĝ, ˆat+1)

||∇f( ˆqest,t, ĝ, ˆat+1)||
(22)

Where β is the tunable parameter that makes the gardient
descent converge to the solution. For our project the best value
is β = 0.1.

B. Estimates from gyroscope:

In this step the gyroscope measurements are used to find
the quaternion derivative which will be used for numerical
integration.

q̇ω,t+1 =
1

2
ˆqest,t ⊗ [0, ωt+1]

T (23)

C. Fusion of estimates:

The values obtained from the previous two steps are fused
to get a final estimate.

q̇est,t+1 = q̇ω,t+1 + q∇,t+1 (24)

qest,t+1 = q̂est,t + q̇est,t+1∆t (25)

Here ∆t is obtained by the difference in timestamps. It should
be noted that the resulting quaternion estimate for t+1 is not
unit quaternion so it must be normalized again.

VII. ATTITUDE FROM UNSCENTED KALMAN FILTER

Unscented Kalman Filter has the advantage of using a non-
linear model that accurately represents real-world scenarios.
Our implementation uses 2 main steps, process update and
measurement update. We have a state vector of 7 states,

x = [qw, qx, qy, qz, wx, wy, wz]
T (26)

In the process update the following equations are used:

A. Process update:

The covariance matrix P is initialized to a 6x6 matrix of
zeros. The matrices Q and R that represent process noise
and measurement noise are tunable matrices that needed fine-
tuning to get the current results, but they were initialized with
some random values to start with.

First, the Cholesky decomposition is done from P and Q
matrices to compute the matrix square root S and subsequently
the disturbances W.

S =
√
Pt−1 +Q (27)

Wi,i+2n = columns(±
√
nS) (28)

Each disturbance computed corresponds to a sigma point
with an overall number of sigma points of 12. The first 3
components of each Wi are used to compute the quaternion
part of each sigma points and the next 3 components are used
to compute the angular velocity part, given as follows:

(qW)i =

[
cos (0.5× |W1:3,i| × dt) ,

W1:3

|W1:3,i|
sin (0.5× |W1:3,i| × dt)

]T
,

(29)
(ωW)I = [W4,i,W5,i,W6,i] (30)

From this the sigma points are calculated as:

Xi =

( qt−1qWi

ωt−1 + ωWi

)
(31)

where qt−1 and ωt−1 are the quaternion and the angular
velocity components of the previous state.

Each of the sigma points obtained is run through the
process model to get individual state estimates Yi where the
process model is computed by:

q∆ =

[
cos (0.5× |ωt− 1| × dt) ,

ωt− 1

|ωt− 1|
sin (0.5× |ωt− 1| × dt)

]
(32)

The individual state estimate is then:

Yi =

( qt−1qWiq∆
ωt−1 + ωWi

)
(33)



Algorithm 1 Algorithm for intrinsic gradient descent
Input: X1, Y
Output: x̄k, vector of ēi, ω̄

Initialisation :
1: Initialize q̄ as X1, mean error ē, and vector of ēi
2: for i = 1 to 2n do
3: ēi = qiq̄t

−1

4: vector.append(ēi)
5: end for
6: ē = 1

2n

2n∑
i=1

ēi

7: e = rottoquat(ē)
8: q̄t+1 = eq̄t

9: ω̄ = 1
2n

2n∑
i=1

ω̄i

10: return q̄, vector of ēi,ω̄

Now we have the transformed sigma points, i.e., sigma
points after the use of the process model which models the
non-linearity of the system. The mean of the transformed
sigma points is computed using gradient descent where an
initial estimate is assumed and then computation is done by
iterating a mean attitude error until convergence. This process
is called intrinsic gradient descent from which the computed
mean is:

x̄k =

(
q̄
ω̄

)
(34)

The mean-centered sigma disturbances Wi are computed as:

x̄k =

(
qYi(q̄)

−1

ωYi − ω̄

)
(35)

The covariance estimate P̄ of the process model is:

P̄k =
ΣW ′

iW ′T
i

2n
(36)

With the mean and covariance of the transformed sigma points
computed the process model has been now propagated.

B. Measurement update:
Next is the measurement model, where the estimated system

measurements are calculated from the transformed sigma
points.

z̄i =

(
Y−
q

1gYq

Yω

)
i

(37)

The mean measurement estimate is computed as:

Z̄ =
Σz̄i
2n

(38)

The covariance of measurement estimates (Pzz), innovation
covariance (Pvv) and cross correlation matrix (Pxz) are cal-
culated as:

Pzz =
Σ[Z̄ − z̄i][Z̄ − z̄i]

T

2n
(39)

Pvv = Pzz +R (40)

Pxz =
Σ[W ′

i][Z̄ − z̄i]
T

2n
(41)

The Kalman gain is then computed as:

K = PxzP
−
vv

1 (42)

The final state estimate and state covariance can now be
computed as:

Pk = Pk −KPvvK
T (43)

x̂k = ˆ̄xk +K(Z − Z̄) (44)

where Z represents the 6x1 vector of the accelerometer and
gyroscope measurements stacked together.

The Q and R matrices were initialized as follows:

Q =


106 0 0 0 0 0
0 106 0 0 0 0
0 0 106 0 0 0
0 0 0 0.5 0 0
0 0 0 0 0.5 0
0 0 0 0 0 0.5

 (45)

R =


8 0 0 0 0 0
0 8 0 0 0 0
0 0 8 0 0 0
0 0 0 0.1 0 0
0 0 0 0 0.1 0
0 0 0 0 0 0.1

 (46)

VIII. RESULTS

The resulting plots for the training data is shown in figures
1, 2, 3, 4, 5, and 6 below. The plots for test data is shown in
7, 8, 9, and 10.

IX. CONCLUSION

After looking at the plots for different training data it can
be seen that the individual estimates from the gyroscope suffer
with drift in the long term due to the numerical integration.
The estimates from accelerometer are prone to noises and
sudden movements. The complementary filter reduces the
error from the sensors to some extent. The performance of
the all the three filters are better for roll and pitch compared
to yaw. Coming to the Madgwick filter since we are getting
better accelerometer estimates we have best performance out
of all the filters. After tuning the β parameter the Madgwick
filter appears to follow the ground truth more closely. This
filter is computationally inexpensive and less complex to
implement.

In the Unscented Kalman Filter(UKF) it can be observed
that it performs well and almost as good as the ground truth
data, but the Madgwick filter follows the ground truth data
better than the UKF. This might be because of the number
of iterations of the intrinsic gradient descent for convergence
leading to lower performance compared to just one step to
converge in the case of Madgwick filter. The UKF might also
need more tuning, although we tried to tune the values of the
matrices Q and R as much as possible.

The link for the ’rotplot’ videos are here: link1, link2, link3,
link4, link5, and link6.

https://www.youtube.com/watch?v=QqZrlZt3IWk
https://www.youtube.com/watch?v=YaMS5Z0NG9c
https://www.youtube.com/watch?v=Bt4ej2pWsNQ
https://www.youtube.com/watch?v=VEVUZr9buow
https://www.youtube.com/watch?v=5XoWXI-sQrE
https://www.youtube.com/watch?v=J3JOtn7tDPE


Fig. 1. Euler angle plots for train data 1.
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Fig. 2. Euler angle plots for train data 2.



Fig. 3. Euler angle plots for train data 3.



Fig. 4. Euler angle plots for train data 4.



Fig. 5. Euler angle plots for train data 5.



Fig. 6. Euler angle plots for train data 6.



Fig. 7. Euler angle plots for test data 7.



Fig. 8. Euler angle plots for test data 8.



Fig. 9. Euler angle plots for test data 9.



Fig. 10. Euler angle plots for test data 10.
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