
Team Apache Stealth:
Unscented Kalman Filter for Attitude

Estimation
Ankit Mittal

Department of Robotics Engineering
Worcester Polytechnic Institute

Email: amittal@wpi.edu

Rutwik Kulkarni
Department of Robotics Engineering

Worcester Polytechnic Institute
Email: rkulkarni1@wpi.edu

Abstract—This report aims to explain attitude esti-
mation techniques for orientation determination using
data from a 6-DoF Inertial Measurement Unit, com-
prising a 3-DoF gyroscope and a 3-DoF accelerometer.
We explore three primary approaches: Complemen-
tary filter-based estimation, Madgwick filter-based es-
timation, and Unscented Kalman filter-based estima-
tion. We generate plots for each method and conduct
a comparative analysis to assess their strengths and
weaknesses. To enhance the validity of our findings, we
introduce Vicon data as a benchmark, serving as the
ground truth for evaluating the accuracy of attitude
estimates produced by the different approaches. Our
analysis indicates that the Unscented Kalman filter
performs the best among the methods studied.

I. INTRODUCTION

In aerial robotics applications, the precise de-
termination of the system’s orientation holds great
importance in providing feedback to autopilot sys-
tems and controllers. This task is often performed
using the Inertial Measurement Unit(IMU), which is
equipped with tri-axis gyroscopes and accelerome-
ters. Gyroscopes measure angular velocity, allowing
for integration over time to approximate orientation.
However, this numerical integration is susceptible to
accumulating errors, which causes divergence from
the true attitude. On the other hand, accelerometers
gauge Earth’s gravitational field, furnishing orien-
tation estimates within an absolute frame of refer-
ence. However, these estimates can be compromised
when the system undergoes translation motion.

One approach to address this challenge is through
the utilization of filters. These filters combine ac-
celerometer and gyroscope data from the IMU
to produce a unified and more reliable orienta-
tion estimate. In this context, we will delve into
three distinct methods for orientation determina-
tion: Complementary Filters, Madgwick Filters, and
Unscented Kalman Filters. Each of these methods
offers unique approaches and advantages in tackling
the critical task of precise orientation estimation in
aerial robotics applications.

Link To Videos: Click Here

II. DATA PRE-POCESSING

This section outlines the methodologies em-
ployed to estimate and rectify biases, as well as
scale the raw data values obtained from the IMU
into SI units for both the accelerometer and gyro-
scope sensors.

A. Accelerometer IMU Data

Prior to analysis, the data extracted from the
IMU necessitates pre-processing to convert it into
meaningful physical units and counteract any inher-
ent instrumentation bias. The subsequent expression
explains the conversion process of raw accelerom-
eter readings, denoted as a = [ax ay az]

T , into
acceleration data represented in m/s2.

âi = 9.81((ai × sa,i) + ba,i)

https://drive.google.com/drive/folders/1YmYvcrzG8HoHziJaI2RPzwx8GLElL5S2?usp=sharing


Here âi represents ai in physical units, bai
repre-

sents bias and sai
represents the scale factor for ith

axis. Where i ∈ x, y, z axis.

B. Gyroscope IMU Data

Similarly, the data originating from the gyro-
scopes underwent processing to convert the raw
gyro angular velocity reading ω = [ωx ωy ωz]

T

into angular velocity data in rad/s, the following
expression is used.

ω̂i =
3300

1023
× π

180
× 0.3× (ωi − bg,i)

To compute the bias term, the average of the
initial 200 gyroscope measurements is derived. This
assumption is based on the stability of the gyro-
scope during the initial 200 measurements within
each dataset, which is utilized to establish the
initial angular velocities. For each axis bias term
is determined. Where k = 200.

bg,i =
1

k

k∑
i=1

ωi

III. ORIENTATION DETERMINATION

In this section, we have addressed the method-
ology for ascertaining orientation from separately
preprocessed accelerometer and gyroscope data. By
leveraging the strengths of each sensor, we have
formulated the implementation of a complementary
filter. This filter integrates the favorable aspects of
both datasets to generate an enhanced orientation
estimation. Finally, the orientation obtained through
the implemented methods is compared with the
ground truth observations extracted from the Vicon
dataset.

A. Orientation from accelerometer

The estimated orientation values were derived
from the accelerometer data by determining how the
acceleration vector aligns with the familiar orienta-
tion of the gravitational vector. This estimation was
achieved using the following simple trigonometric
relationships.

Roll(ϕ) = tan−1(ay/
√
(ax)2 + (az)2)

Pitch(θ) = tan−1(ax/
√

(ay)2 + (az)2)

Y aw(ψ) = tan−1(
√

(ax)2 + (ay)2/az)

However, it’s crucial to acknowledge that this
method of attitude estimation has limitations. Be-
cause of the symmetry of the gravity vector around
the z-axis, this approach is inherently imprecise
for Yaw measurements. Moreover, distinguishing
between acceleration stemming from rapid move-
ment and that resulting from gravity is challenging.
As a result, this method isn’t suitable for offering
accurate estimates during swift motions over brief
time intervals.

B. Orientation from Gyroscope

The gyroscope values are integrated to obtain the
angles. The integration is performed using quater-
nions due to their inherent advantages in repre-
senting orientation changes. Unlike Euler angles,
quaternions do not suffer from gimbal lock, which
is a phenomenon where a particular orientation
configuration limits the range of motion in certain
directions. This makes quaternions more robust for
continuous rotations. Quaternions comprise of a
single real element (represented by the subscript 0)
and three imaginary elements (represented by the
subscripts 1, 2, and 3). The following expression
describes the attitude quaternion.

q = [q0 q1 q2 q3]
T

q0
2 + q1

2 + q2
2 + q3

2 = 1

The updated quaternions is calculated as below:

α∆ = |ω⃗k|∆t

e⃗∆ =
ω⃗k

|ω⃗k|

qk =

(
cos

(
α∆

2

)
, e⃗∆sin

(
α∆

2

))
To calculate current state quaternion the follow-

ing equations are used:

α = |ω⃗k|



e⃗ =
ω⃗k

|ω⃗k|

qk =
(
cos

(α
2

)
, e⃗sin

(α
2

))
Now, the new state quaternion is described as (k

is the current state and k + 1 is the next state),

qk+1 = qkq∆

Then euler angles are calculated from the quater-
nions as follows:

Roll(ϕ) = tan−1

(
2(q0q1 + q2q3)

1− 2(q12 + q22)

)
Pitch(θ) = sin−1(2(q0q2 − q3q1))

Y aw(ψ) = tan−1

(
2(q0q3 + q1q2)

1− 2(q22 + q32)

)
This method generally performs well, but of-

fers no way to compensate for noise in the IMU
readings, therefore the estimates tend to drift and
become more inaccurate with time.

IV. COMPLEMENTRY FILTER

Following the independent calculation of atti-
tude using accelerometer and gyroscope data, the
derived attitudes can be merged to enhance the
overall attitude estimation. The complementary fil-
ter employs a predetermined weighted average of
both individual components to produce a refined
attitude estimation. This blending of accelerometer
and gyroscope information optimally leverages the
strengths of each source to yield a more accurate
and stable attitude representation.ϕθ
ψ


Comp

=

α 0 0
0 β 0
0 0 γ

 ·

ϕθ
ψ


Acc

+

1− α 0 0
0 1− β 0
0 0 1− γ

 ·

ϕθ
ψ


Gyro

Here α, β and γ are the mixing parameters. α was
chosen as 0.75, β was chosen as 0.75 and γ was
chosen as 0.0 . Effectively the gyro measurements
are high pass filtered to remove drift and accelerom-
eter measurements are low pass filtered to remove
noise.

V. UNSCENTED KALMAN FILTER

Unscented Kalman Filter Utilizes the non-
linearity of the process model state estimation
and covariance matrix estimation through numerous
sigma points[?]. To initialize the similar to the
Kalman filter for attitude estimation, you begin by
defining key matrices like process noise Q, mea-
surement noise R, and the covariance matrix P . To
generate sigma points, which represent the system’s
uncertainty, you calculate disturbances W . These
disturbances W are sampled from a distribution
centered around zero. The generated sigma points
are then used to predict and update the system’s
state based on measurements, providing an estimate
of the system’s attitude in space. For attitude esti-
mation, we have a state vector of 7 states.

x =



q0
q1
q2
q3
ωx

ωy

ωz


Since the state has 6 degrees of freedom,

filter initialized covariance matrix P as a
6X6matrix. Then sigma points are calculated
using CholeskyDecomposition.

S =
√
Pt−1 +Q

.
Here Q is the process model covariance. The

disturbance (noise) of the sigma points is calculated
using

Wi,i+2n = columns(±
√
nS)

The above equations result in 12 sigma points
disturbances (noise) which lie on the positive and
negative side along eigen vector of covariance ma-
trix P. Now sigma points are calculated by adding
these disturbances to the current state.

Xi =

[
qt−1qWi

ωt−1 + ωWi

]



Where qt−1, ωt−1 reefer to the current state
and ωWi

is the omega part of W and qWi
is the

quaternion part of W . After computing the sigma
points, the next step involves calculating process
model points. Each sigma point is passed through
the system’s process model, resulting in individ-
ual state estimates denoted as Yi. In this context,
the process model is responsible for updating the
attitude quaternion using the current rotation rates
as inputs. The updated sigma points are computed
using.

Yi = A(Xi, 0) =

[
qt−1qWq∆
ωt−1 + ωWi

]
where q∆ is calculated for time t assuming the

angular velocity remains constant during the time
interval ∆t

ωt = ωt−1

q∆ =

[
cos

(
|ωt−1|∆t

2

)
,
ωt−1

|ωt−1|
sin

(
|ωt−1|∆t

2

)]
Unlike the standard Kalman filter, where the

estimated state and covariance matrix are obtained
through a linear process model and the current
covariance matrix, in this UKF , the estimated state
and covariance are derived from the outcomes of
the sigma points. This approach enables the UKF to
effectively handle and model the non-linear aspects
of the system’s dynamics.

The mean of the sigma points cannot be cal-
culated directly by taking average as each sigma
point is representing a rotation through quaternions.
There for the mean of the sigma points is calculated
by iterating a mean attitude error until a mean
attitude is converged upon using intrinsic gradient
descent method. (Refer Algorithm 1.)

The covariance matrix can be computed with the
mean centered disturbances Wi

′
now that they are

centered around the mean sigma point.

P =
1

2n

∑
Wi

′
Wi

′T

where Wi

′
is the mean centre W.

Wi

′
= [Xi − x̄] =

[
qiq̄

−1

ωi − ω̄

]

Data: Y
Result: Ȳ
qt = qX ,0 ;
while N ̸=Maxiter or |e| > Thld do

for ∀i do ;
e⃗i = qiq̄t

−1

end
compute mean using,

e⃗ =
1

2n

2n∑
i=1

e⃗i

q̄t+1 = eq̄t

end

ω̄ =
1

2n

2n∑
i=1

ωi

Algorithm 1: Intrinsic Gradient Descent

Once the estimate and covariance estimates are
computed, the process model propagation is fin-
ished. The measurement model then begins by
calculating the estimated system measurements Zi

based on the sigma points. In this context, the
gravity frame is represented using quaternions.

Zi =

[
Y−1
q gYq

Yω

]
The mean of these computed quaternions and an-

gular velocities are computed into a mean measure-
ment estimate zk. For mean computation, quater-
nions are converted into rotation vectors.

z̄ =
1

2n

∑
Zi

The covariance of the measurement estimates
Pzz is also computed from the measurement es-
timates.

Pzz =
1

2n

∑
[̄Z − z̄][̄Z − z̄]T

the innovation term is given by:

vk = zk − z̄



where zk is the observations with stacked ac-
celerometer and gyroscope data readings from the
IMU sensor. The innovation covariance is calculated
using,

Pvv = Pzz +R

.
Here R is the measurement model covariance

6X6 matrix. In order to calculate Kalman gain
cross-covariance matrix is calculated as,

Pxz =
1

2n

∑
[Wi

′
][̄Z − z̄]T

With the innovation covariance and cross-
covariance matrix, Kalman gain K can be calcu-
lated as follows.

K = PxzP
−1
vv

After the Kalman gain computation state update
and state covariance can be calculated as follows:
state update:

x̂t = x̂t−1 +Kkvk

state Covariance as,

Pt = P̂t−1 −KKPvvK
T
K

Then all the above steps are repeated for the next
state using the calculated state and covariance

VI. RESULT

Plots depicting the calculated Roll (ϕ), Pitch
(θ), and Yaw (ψ) obtained from various methods
are generated for each dataset (1 to 6). These
methods encompass individual accelerometer and
gyroscope readings, complementary filters, and the
UKF. In order to evaluate their accuracy, the Vicon
measurements are regarded as the established
ground truth against which the performance of
each method is assessed. The evaluated datasets
from 6 to 10 are test datasets and do not contain
Vicon measurements

VII. CONCLUSION

The results demonstrate varying accuracy among
different attitude estimation methods, with the UKF
filter showing the closest alignment to Vicon truth
data.

The Complementary filter is a simple and com-
putationally efficient option that can provide rea-
sonably accurate estimates. It is susceptible to drift
over time. The Madgwick filter, on the other hand,
strikes a balance between accuracy and computa-
tional complexity. Its versatility and ease of imple-
mentation make it attractive for orientation estimate
tasks. However, the Madgwick filter is primarily
designed for simpler orientation estimation tasks
and may struggle with highly nonlinear systems.
The Unscented Kalman Filter(UKF) is the most so-
phisticated among these filters and offers the highest
potential accuracy. The UKF can potentially provide
more precise estimates than the Madgwick filter
because the UKF uses an approach that considers
the nonlinearity of the system dynamics and sensor
measurements in its estimation process. However,
it demands more computational resources and is
difficult to model conceptually. It should also be
noted that it is extremely sensitive to noise matrix
Q & R and therefore, fine-tuning is required.
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1. TRAIN DATASET 1

Fig. 1: Comparison of Attitude Estimations for dataset 1



2. TRAIN DATASET 2

Fig. 2: Comparison of Attitude Estimation for dataset 2



3. TRAIN DATASET 3

Fig. 3: Comparison of Attitude Estimation for dataset 3



4. TRAIN DATASET 4

Fig. 4: Comparison of Attitude Estimation for dataset 4



5. TRAIN DATASET 5

Fig. 5: Comparison of Attitude Estimation for dataset 5



6. TRAIN DATASET 6

Fig. 6: Comparison of Attitude Estimation for dataset 6



7. TEST DATASET 7

Fig. 7: Comparison of Attitude Estimation for dataset 7



8. TEST DATASET 8

Fig. 8: Comparison of Attitude Estimation for dataset 8



9. TEST DATASET 9

Fig. 9: Comparison of Attitude Estimation for dataset 9



10. TEST DATASET 10

Fig. 10: Comparison of Attitude Estimation for dataset 10
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