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Abstract—The aim of this project was to estimate the 3D
orientation (attitude) of an IMU using four different methods —
using an ideal gyroscope, an ideal accelerometer, Complementary
Filter, Madgwick Filter and Unscented Kalman Filter.

I. PHASE 1

In Phase 1 of this project, we performed IMU attitude
estimation using four different methods — using a gyroscope,
an accelerometer, a Complementary filter, and a Madgwick
filter. The four methods were tested on six different training
datasets and four test sets. The results were plotted for analysis
against the ground truth.

A. Data Processing

The data was collected with an ArduIMU+ V2, a six
degree of freedom Inertial Measurement Unit and the ground
truth data was collected using a Vicon motion capture system.
Each data file consists of six values and their corresponding
timestamps — three linear acceleration values and three
angular velocity values in the x, y and z direction, in the
form

[
ax ay az ωz ωx ωy

]T
.

The accelerometer bias and scale parameters were also
provided in a separate file in the form of a 2×3 vector where
the first row denotes the scale values —

[
sx sy sz

]
and

the second row denotes the bias values —
[
ba,x ba,y ba,z

]
.

The Vicon ground truth data is extracted in a similar
manner. It contains the rotation matrices estimated from
ZY X Euler angles in the form of 3 × 3 × N matrices and
their corresponding timestamps.

1) Data Conversion: The IMU data is not in physical units.
Therefore, we need to convert it before attitude estimation.
Converting acceleration values to ms−2:

ãx =
ax + ba,x

sx
(1)

where, ãx represents the value of ax in physical units, bax
is the bias and sx is the scale factor of the accelerometer.
Converting angular velocities to rad/s:

ω̃ =
3300

1023
× π

180
× 0.3× (ω − bg) (2)

Here, ω̃ represents the value of ω in physical units and bg is
the bias. bg was calculated as the average of the first hundred

samples (assuming that the IMU is at rest in the beginning).

2) Time Stamp Alignment Using Slerp: Since the times-
tamps of the IMU data and the Vicon ground truth data are
not aligned, I aligned them using Slerp.

II. ATTITUDE ESTIMATION USING AN IDEAL GYROSCOPE

The gyroscope mathematical model is given by:

ω = ω̂ + bg + ng (3)

Here, ω is the measured angular velocity from the gy-
roscope, ω̂ is the latent ideal angular velocity we wish to
recover, bg is the gyroscope bias which changes with time and
other factors like temperature, and ng is the white Gaussian
gyroscope noise.We estimate the orientation using only gyro-
scope data by integration. Since, we cannot perform integration
without knowing the initial values, we assume that the initial
orientation from Vicon is known. The initial values can also be
estimated from other sensors or by starting from rest. We have
the angular velocities at timestamp t and we want to estimate
the orientations at timestamp t+1. The eqn. can be given by:ϕθ

ψ


t+1

=

ϕθ
ψ


t

+

ϕ̇θ̇
ψ̇


t

× δt (4)

The computed output for imuRaw1.mat is shown in Fig. 1
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Fig. 1. Gyroscope Attitude Estimation for imuRaw1.mat



III. ATTITUDE ESTIMATION USING AN IDEAL
ACCELEROMETER

The accelerometer mathematical model is given by:

a = WRB
T (â− gW ) + ba + na (5)

Here, a is the measured acceleration from the acc, â
is the latent ideal acceleration we wish to recover, R is
the orientation of the sensor in the world frame, g is the
acceleration due to gravity in the world frame, ba is the
accelerometer bias which changes with time and other
factors like temperature and na is the the white gaussian
accelerometer noise.

We assume that our IMU is only rotating and we want to
estimate the orientations in the next state (

[
ϕ θ ψ

]
t+1

T
)

when we have the linear accelerations in x, y and z direction in
the previous state (

[
ax ay az

]
t

T
). We also assume that the

world frame is oriented in such a way that the negative z axis
coincides with the gravity vector. Now, the only forces acting
on the accelerometer are coming from the gravity vector. So,

Roll, ϕ = tan−1(
ay√

ax2 + az2
)

Pitch, θ = tan−1(
−ax√

ay2 + az2
)

It should be noted that since the accelerometer is symmetric
with respect to the z axis, it does not provide any information
about Yaw. However, since the IMU is never completely
vertical, the Yaw can be computed as:

Y aw, ψ = tan−1(

√
ax2 + ay2

az
)

The computed output for imuRaw1.mat is shown in Fig. 2
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Fig. 2. Accelerometer Attitude Estimation for imuRaw1.mat

IV. ATTITUDE ESTIMATION USING COMPLEMENTARY
FILTER

In orientation estimation, gyroscope and accelerometer data
play crucial roles, each with distinct advantages and lim-
itations. However, gyroscopes are susceptible to bias and
drift over time due to varying biases. Accelerometers, on the
other hand, offer stability in long-term orientation estimation
by utilizing gravity-influenced readings, but they falter in
accurately capturing rapid movements. To counter noise in
accelerometer data, low-pass filtering is applied, albeit at the
cost of introducing a proportional lag represented by the filter’s
time constant (α). To tackle these challenges, a complementary
filter is employed. Gyroscope data is high-pass filtered to
alleviate bias-related drift, while accelerometer data is low-
pass filtered to minimize noise. These filtered outputs are then
weighted, scaled, and combined, harnessing the strengths of
both sensors while mitigating their weaknesses. This approach
results in accurate orientation estimates that are both respon-
sive to fast changes and resistant to long-term drift.

Low pass filter formula: [ α = 0.9 ]

ât+1 = (1− α)at+1 + αât (6)

High pass filter formula: [ α = 0.003 ]

ω̂t+1 = (1− α)ω̂t + (1− α)(ωt+1 − ωt) (7)

Complementary Filter formula: [ α = 0.5 ]

Angt+1 = (1− α)(Angt + ωt+1dt) + αat+1 (8)

The complementary filter is shown in Fig. 3.

Fig. 3. Complementary Filter

The computed output for imuRaw1.mat is shown in Fig. 4

V. ATTITUDE ESTIMATION USING MADGWICK FILTER

The Madgwick filter operates by fusing data from the
accelerometer and gyroscope to produce accurate and real-
time attitude estimates. It combines sensor measurements with
a quaternion representation q =

[
q1, q2, q3, q4

]
in w,x,y,z

format which deals with the gimbal lock problem caused
because of Euler angles. The major steps involved in imple-
menting a Madgwick Filter are shown below and a detailed
mathematical explanation for the same can be found in [1].
Fig. 5 shows the overview of the Madgwick Filter.
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Fig. 4. Complementary Filter Attitude Estimation for imuRaw1

Fig. 5. Madgwick Filter

A. Calculating Orientation Increment from Accelerometer:

We model the attitude estimation of the accelerometer
by modeling it as an optimization problem. We basically
minimize the function (f ).

min
I
W q̂∈R4×1

f
(
I
W q̂,W ĝ, I â

)
(9)

f
(
I
W q̂,W ĝ, I â

)
= I

W q̂∗ ⊗W ĝ ⊗ I
W q̂− I â (10)

where, q̂ is the normalized quaternion in w,x,y,z format,
W ĝ is the gravity vector in the world frame given by
W ĝ =

[
0 0 0 1

]T
and I â is the normalized accelerometer

measurements in the Inertial frame. To minimize this function,
we use a gradient descent algorithm:

∇f
(
I
W q̂est,t,

W ĝ, I ât+1

)
= (11)

JT
(
I
W q̂est,t,

W ĝ
)
f
(
I
W q̂est,t,

W ĝ, I ât+1

)

f
(
I
W q̂est,t,

W ĝ, I ât+1

)
=

2 (q2q4 − q1q3)− ax
2 (q1q2 + q3q4)− ay
2
(
1
2 − q

2
2 − q23

)
− az

 (12)

J is the Jacobian of the function given by,

J
(
I
W q̂est,t,

W ĝ
)
=

−2q3 2q4 −2q1 2q2
2q2 2q1 2q4 2q3
0 −4q2 −4q3 0

 (13)

The gradient update is given as:

I
Wq∇,t+1 = −β

∇f
(
I
W q̂est,t,

W ĝ, I ât+1

)
||f

(
I
W q̂est,t,W ĝ, I ât+1

)
||

(14)

where β is a tunable parameter that models the magnitude
of gyroscope error in the direction of the accelerometer
measurements. After making some assumptions we are able
to get this simplified equation which will help us converge in
one step. These assumptions are given in detail in [1].

B. Calculating Orientation Increment from Gyroscope:

When it comes to gyroscopic data, the filter performs an in-
cremental update to refine the orientation estimation. Suppose
gyroscope measurements, represented as ω, provide informa-
tion about the angular velocity of the object. To perform an
incremental update, we apply a mathematical operation called
quaternion multiplication, denoted as ⊗, which combines our
current orientation quaternion q with a new quaternion derived
from the gyroscope data. This is defined by equation (15):

q1 ⊗ q2 =


w1w2 − x1x2 − y1y2 − z1z2
w1x2 + x1w2 + y1z2 − z1y2
w1y2 − x1z2 + y1w2 + z1x2
w1z2 + x1y2 − y1x2 + z1w2

 (15)

I
W q̇ω,t+1 =

1

2
I
W q̂est,t ⊗

[
0, Iωt+1

]T
(16)

In the equation (16): - I
W q̂est,t represents our current orien-

tation estimate in the inertial frame. - I
W q̇ω,t+1 represents

the orientation increment from gyroscope measurements. -[
0, Iωt+1

]
represents the angular velocity as a quaternion.

The result of this computation represents the incremental
change in orientation caused by the gyroscope measurements
over the given time interval. This incremental update is then
applied to the current orientation estimate, to refine the esti-
mate of the object’s orientation.

C. Fuse Measurements:

The orientation estimates from both the gyroscope and
accelerometer are fused to obtain the estimated attitude
I
Wqest,t+1:

I
W q̇est,t+1 = I

W q̇ω,t+1 +
I
Wq∇,t+1 (17)

I
Wqest,t+1 = I

W q̂est,t +
I
W q̇est,t+1∆t (18)

This is repeated for each time step to calculate the orienta-
tion over time.



VI. ATTITUDE ESTIMATION USING UNSCENTED KALMAN
FILTER

The Kalman filter is effective in estimating system attitude
but relies on linear process models, which may not suit all
systems. The Unscented Kalman filter (UKF) [2] addresses
this limitation by processing the estimated state and covariance
matrix through the actual system dynamics, allowing it to
handle nonlinear processes. Unlike the Extended Kalman
Filter (EKF), which linearizes model equations, the UKF
approximates the Gaussian probability distribution using a set
of sample points. This approach often yields more accurate
results since it retains the original equations while also being
computationally efficient due to the absence of Jacobi matrix
computations. The filter starts by initializing a process noise
matrix Q, measurement noise matrix R and a covariance matrix
P. The state vector is defined as

x = [qw qx qy qz ωx ωy ωz] (19)

This is composed of the attitude quaternion and the angular
velocities.

A. Prediction Step
1) Computing Sigma Points: The square root points are

calculated as:
S =

√
Pk−1 +Q (20)

Here Q is the process model noise covariance matrix and P is
the state covariance matrix. S is calculated using the Cholesky
Root Decomposition method. The noise of the sigma points is
calculated as:

Wi,i+n = columns(±
√
n · (Pk−1 +Q)) (21)

Here n was chosen instead of 2n because it converges faster
and is numerically more stable. Finally, the sigma points are
calculated as:

χi =

(
qt−1qW
⃗ωt−1 + ω⃗W

)
(22)

Here ω⃗W is the angular velocity part of W and qW is the
quaternion part of W .

angle : αW = |W̃q| (23)

axis : e⃗w =
w⃗k

|w⃗q|
. (24)

qW =
[
cos

(αW

2

)
, e⃗W sin

(αW

2

)]
(25)

2) Transforming Sigma Points: The sigma points are passed
through the process model to project each point ahead in time,
resulting in a different set of state vectors. It is given as:

Yi =
(
qt−1qWq∆
⃗ωt−1 + ω⃗W

)
(26)

angle : α∆ = |ω̃k|∆t (27)

axis : e⃗∆ =
ω⃗k

|ω⃗k|
. (28)

q∆ =
[
cos

(α∆

2

)
, e⃗∆ sin

(α∆

2

)]
(29)

3) Computing the Mean with Intrinsic Gradient Descent:
The mean value is simply the sum over all elements of the
set divided by the number of addends (2n). This is called the
barycentric mean and is given by,

Y =
1

2n

2n∑
i=1

Yi (30)

The orientation component of {Yi} is more difficult because
orientations are periodic. In other words, they are members
of a homogenous Riemannian manifold (the four dimensional
unit sphere) but not of a vector space. We employ Intrinsic
Gradient Descent to obtain the mean of sigma points. Initially,
qt is set as the first sigma point. In each iteration, we compute
the error e⃗i from every sigma point to qt. The average of
these error vectors forms an average error e⃗, which we then
transform back into a quaternion and apply to qt. This iterative
process continues until the mean error falls below a predefined
threshold, resulting in the computation of the mean attitude.

Algorithm 1 Intrinsic Gradient Descent
Data Y
Output ¯̂x
t← 1
q̄t ← Y1
while t < MaxIter and |e| >Thld do

for ∀i do
qi ← Yi
e⃗i ← qiq̄

−1
t

end
e⃗← 1

2n

∑2n
i=1 e⃗i

q̄t+1 ← e⃗ q̄t
t← t+ 1

end while

ω̄ ← 1
2n

∑2n
i=1 ωi

¯̂x← [q̄Tt ω̄T ]T

4) Computing the Covariances: The term [Xi − x̄] is the
difference between the sigma point and the mean of the
distribution. With the mean state µ̄ from the sigma points,
the covariance estimates P̄ , and the mean-centered sigma
disturbances {Wi} can be computed.

P =
1

2n

2n∑
i=−1

[Xi − x̄][Xi − x̄]T (31)

P−
k =

1

2n

2n∑
i=1

W
′

iW
′T
i (32)

Similar toWi,W ′
i has a rotation vector component r⃗W′ and

an angular velocity vector component ω⃗W ′

W ′
i =

(
r⃗W′

ω⃗W′

)
(33)



w⃗W′ is the (standard vectorial) difference of the angular
velocity components of Yi and x̂−k , denoted by

ω⃗W′ = ω⃗i − ω⃗ (34)

r⃗W′ is a representation of the rotation that turns the orien-
tation part of x̂−k into Yi. The corresponding quaternion rW′

of this rotation is given by,

rW′ = qiq̄
−1 (35)

Therefore,

W
′

i =

(
qiq̄

−1

ω⃗i − ¯⃗ω

)
(36)

The measurement model starts by calculating the estimated
system measurements z̄i from the sigma points. g is the gravity
frame represented through quaternions.

z̄i =

[
Y−1
q gYq
Yω

]
i

(37)

The mean of these is given by the barycentric mean formula
as per equation 30.

The covariance of the measurement estimates is given as,

Pzz =
1

2n

2n∑
i=1

[Zi − z−k ][Zi − z−k ]T (38)

From the measurement covariance, the innovation covari-
ance can be calculated as the sum of the measurement covari-
ance and the measurement noise matrix.

Pνν = Pzz +R (39)

The cross-correlation matrix is computed as,

Pxz =
1

2n

2n∑
i=1

[W ′
i][Zi − z−k ]T (40)

B. Update Step:

The Kalman Gain is computed as:

Kk = PxzP
−1
νν (41)

The state update is given as:

x̂k = x̂k̄ +Kkνk (42)

The covariance update is given as:

Pk = P−
k −KkPvvK

T
k (43)

The process and measurement noise covariance matrices
we used are as follows:

Q =


105 0 0 0 0 0
0 105 0 0 0 0
0 0 105 0 0 0
0 0 0 0.1 0 0
0 0 0 0 0.1 0
0 0 0 0 0 0.1

 (44)

R =


11.2 0 0 0 0 0
0 11.2 0 0 0 0
0 0 11.2 0 0 0
0 0 0 0.01 0 0
0 0 0 0 0.01 0
0 0 0 0 0 0.01

 (45)

C. Summary of the Unscented Kalman Filter

1) The sum of the previous estimate error covariance
Pk−1 and process noise covariance Q is transformed
into a set {Wi} of 2n six-dimensional vectors. This
set is distributed around zero with the covariance
Pk−1 +Q.

2) The previous state estimate x̂k−1 is applied to
{Wi}, resulting in the set {Xi} of 2n seven-
dimensional state vectors (sigma points).

3) The process model A() transforms {Xi} into {Yi}.
4) The a priori estimate x̂−k is computed as the mean

of the transformed sigma points {Yi}.
5) The set {Yi} is transformed into the six-dimensional

set {W ′
i} by first removing the mean vector x̂−k from

each element and then converting the quaternion
part into a rotation vector.

6) The a priori process covariance P−
k is computed

from {W ′
i}. This concludes the time update step

(“prediction”).
7) The mean of {Zi} is computed, giving the measure-

ment estimate z−k . This is compared to the actual
measured value zk, their difference being νk, the
innovation.

8) The innovation covariance Pνν is determined by
adding the measurement noise R to the covariance
Pzz of the set {Zi}.

9) The cross correlation matrix Pxz is computed from
the sets {W ′

i} and {Zi}.
10) The Kalman gain Kk is first computed from Pxz

and Pνν and then used to calculate the a poste-
riori estimate x̂k and its estimate error covariance
Pk, which concludes the measurement update step
(“correction”).

VII. RESULTS

– The plots for the estimated orientations from the
Complementary Filter, Madgwick Filter, Unscented
Kalman Filter plotted against the Vicon ground truths
for the six training data sets are shown in Fig. 6, Fig.
7, Fig. 8, Fig. 9, Fig. 10 and Fig. 11 respectively.

– The plots for the estimated orientations from the
Complementary Filter, Madgwick Filter, and Un-
scented Kalman Filter for the four test data sets are
shown in Fig. 12, Fig. 13, Fig. 14, Fig. 15 and Fig.
11 respectively.

– Rotplot Output Link

VIII. CONCLUSION

– From the figures, we can observe that the gyroscope
data is pretty accurate but suffers from drift over time

https://wpi0-my.sharepoint.com/:f:/g/personal/msdiwan_wpi_edu/EunxRlhUOhJAo6FDkrQk2zwBG91rySUuoSBU62IUamAlig?e=NhfXnC


while the accelerometer data has noise.
– The complementary filter is able to reduce the drift

and noise after fusing the outputs of the accelerome-
ter and the gyroscope data. However, the comple-
mentary filter still drifts over time, although not
as bad as the gyroscope. Also, if we have violent
motions, the complementary filter does not work
well as it depends on the individual values of the
gyroscope and the accelerometer.

– It was also observed that removing the bias, in the
beginning, will give a better output in the comple-
mentary filter.

– From the plots, we can observe that the Madgwick
Filter performs better than the Complementary filter
for attitude estimation.

– Avoids Gimbal Lock: The use of quaternions elim-
inates the problem of gimbal lock, a limitation of
Euler angles, ensuring robust and stable attitude
estimation.

– Computationally Efficient: The Madgwick filter is
computationally efficient as we use the gradient
descent algorithm to optimize the function in a single
step.

– The performance of UKF is comparable to Madg-
wick Filter and it even surpasses its performance
at many points throughout the different datasets.
Though its heavily influenced by the choice of initial
process model noise and sensor noise covariance ma-
trices. Nevertheless, it does a great job of recovering
after periods of not aligning with the Vicon data.
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Fig. 6. Orientations for Dataset 1
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Fig. 7. Orientations for Dataset 2
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Fig. 8. Orientations for Dataset 3
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Fig. 9. Orientations for Dataset 4
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Fig. 10. Orientations for Dataset 5
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Fig. 11. Orientations for Dataset 6
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Fig. 12. Orientations for Dataset 7
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Fig. 13. Orientations for Dataset 8
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Fig. 14. Orientations for Dataset 9



25
30

35
40

45
50

Ti
m

e
+1

.2
97

43
06

00
0e

9

−0
.6

−0
.4

−0
.20.
0

0.
2

0.
4

Roll Orientation

Ro
ll 

Or
ie

nt
at

io
n 

Ov
er

 T
im

e
X 

Or
ie

nt
at

io
n 

- c
om

p 
fil

te
r

X 
Or

ie
nt

at
io

n 
- m

ad
g 

fil
te

r
X 

Or
ie

nt
at

io
n 

-  
UK

F 25
30

35
40

45
50

Ti
m

e
+1

.2
97

43
06

00
0e

9

−0
.2

−0
.10.
0

0.
1

0.
2

0.
3

Pitch Orientation

Pi
tc
h 
Or

ie
nt
at
io
n 
Ov

er
 T
im

e
Y 
Or

ie
nt
at
io
n 

- c
om

p 
fil

te
r

Y 
Or

ie
nt

at
io

n 
- m

ad
g 

fil
te

r
Y 

Or
ie

nt
at

io
n 

-  
UK

F 25
30

35
40

45
50

Ti
m

e
+1

.2
97

43
06

00
0e

9

−3−2−10123

Yaw Orientation

Ya
w 
Or
ie
nt
at
io
n 
Ov

er
 T
im

e
Z 
Or
ie
nt
at
io
n 

- c
om

p 
fil

te
r

Z 
Or

ie
nt

at
io

n 
- m

ad
g 

fil
te

r
Z 

Or
ie

nt
at

io
n 

-  
UK

F

Fig. 15. Orientations for Dataset 10
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