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Abstract—This project focuses on the practical implemen-
tation of an Unscented Kalman Filter (UKF) to track three-
dimensional orientation. The main objective is to utilize IMU
sensor data obtained from gyroscopes and accelerometers to
accurately estimate the complex 3D orientation. A crucial aspect
of this project involves verifying the accuracy of our orientation
estimations by comparing them with ground truth data collected
through a Vicon motion capture system. This report presents the
methodologies, findings, and insights gained from this important
endeavor, providing valuable insights into the effectiveness and
potential applications of the Unscented Kalman Filter in the field
of orientation tracking.

I. INTRODUCTION

The aim of this project is to implement a Unscented
Kalman filter to estimate the orientation using gyroscope and
accelerometer data obtained from a 6-DOF IMU. The esimated
orientation is compared with the ground truth orientation
obtained from a vicon motion capture system. Orientations
from individual sensors are also compared with the ground
truth orientation.

II. REMOVING BIAS FROM GYROSCOPE DATA AND
SCALING

The raw values are obtained from the gyroscope are con-
verted to the physical units (rads-1) using

∼
ω =

3300

1023
× π

180
× 0.3× (ω − bg) (1)

where ∼
ω represents the the value of ω in physical units and

bg is the bias of the gyroscope. bg is calculated as the average
of the first 300 samples.

III. REMOVING BIAS FROM ACCELEROMETER DATA AND
SCALING

The raw values obtained from the accelerometer are con-
verted to the physical units (ms-2) using

∼
ax = (ax × sx + ba,x)× g (2)

here ax is the measured quantity from accelerometer, and g

IV. ATTITUDE ESTIMATION USING UNSCENTED KALMAN
FILTER

A. Filter Explanation

The state is defined as

x =



q0
q1
q2
q3
ωx

ωy

ωz


(3)

Where [q0, q1, q2, q3]
T represents a unit quaternion with q20 +

q21+q22+q23 = 1, hence representing only 3 degrees of freedom,
not 4.

The filter begins with an initialization process, it involves
setting up process noise matrix Q, measurement noise matrix
R, and covariance matrix P. The disturbances W used to
generate sigma points are computed from covariance and
process noise matrices, employing the matrix square root,
which is derived using Cholesky Decomposition.

In attitude estimation, the state vector comprises 7 states:
[qw qx qy qz wx wy wz]T, which includes attitude quaternion
and Euler rotation rates. With 6 degrees of freedom in the
states, a dimensionality of n=6 is used. The filter initializes P
as a identity matrix of size n x n, as the covariance quickly
converges to the correct value. Additionally, sigma points are
calculated using

√
λ+ n , as described to enhance tracking.

Also the mean of the distribution is also considered as a sigma
point.

The square root matrix is found using,

S =
√
Pk−1 +Q

Here Q is the process model covariance. The disturbance
(noise) of the sigma points is calculated using,

W0 = 0

Wi,i+n = columns(±
√
(n+ λ)S)

Here, λ is chosen as n − 3 it was more numerically stable
and converged faster. Here, n is the number of independent
variables in the state (6 in this case). The Sigma Points are
computed using,

Xi = x̂k−1 +Wi



Xi =

[
qk−1qW
ω̃k + ω̃W

]
where ω̃W is the omega part of W , and qW is the quaternion
part of W . This results in 13 sigma points, each available in
both negative and positive cases as well as the mean. These
sigma points are calculated by adding disturbances to the
current state. These sigma points are weighted as:

wt0 =
λ

λ+ 2n

wti!=0 =
1

λ+ 2n

After calculating the sigma points, the process model points
are determined. Each sigma point is processed through the
system’s model to obtain individual state estimates Yi. In this
system, the process model advances the attitude quaternion
using the current rotation rates. The quaternion change q∆ in
the process model is computed in a manner similar to how the
disturbance for sigma points was determined, but it now takes
into account the current angular velocity ωt−1 instead of the
quaternion disturbance W1:3,i.

The mean of the sigma points is calculated iteratively by
determining a mean attitude error until a mean attitude is
reached. During each iteration, the error ei from each sigma
point to the quaternion qt is computed. The average of these
error vectors yields an average error e, which is transformed
back into a quaternion and applied to qt to adjust it toward
the true mean attitude. This iteration process continues until
the mean error falls below an acceptable threshold.

The innovation covariance can be calculated by adding the
measurement covariance and the measurement noise matrix.
To compute the Kalman gain required for updating the state,
the cross-correlation matrix Pxz must be computed.

With the Kalman gain determined, the state estimate and
state covariance can be updated. The new covariance is
calculated by subtracting the product of the Kalman gain,
innovation covariance matrix, and Kalman gain transpose from
the estimated covariance. The state is updated as the previous
state plus the product of the Kalman gain and the difference
between the measurement readings zˆ and the estimated mea-
surement readings.

For the dataset used, the process and measurement noise
matrix were initialized as follows:

In summary, this filtering process combines elements of
sigma point calculations, process and measurement modeling,
and iterative adjustments to estimate states and covariances
while accounting for non-linearities in the system.

Process Model:
The process model assumes that the angular velocity re-

mains constant during the time interval ∆t.

ωk = ωk−1

q∆ =
(
cos

(
|ω̃k−1|∆t

2

)
, ω̃k−1

|ω̃k−1| sin
(

|ω̃k−1|∆t
2

))

The updated sigma points are computed using,

Yi = A(Xi, 0) =

(
qk−1qW q∆

ω̃k−1 + ω̃W

)
Calculate Mean of Sigma Points:
Now, use Intrinsic Gradient Descent to find the mean

quaternion. Data: Y
Result: ˆ̄xk

Initialize q̄ as X1 while t < MaxIter or |e| ≤ Thld do

for all i, ẽi = qiq̄
−1
t

First ẽi is converted as rotation vector. The compute mean
using,

ẽ =

2n+1∑
i=1

wti ∗ ẽi

where ẽ and ẽi are rotation vectors. Then ẽ is again converted
to quaternion.

q̄t+1 = eq̄t

ω̄ =
1

2n

2n∑
i=1

ωi

Algorithm 1: Intrinsic Gradient Descent
Update Model Covariance:

P̄k =

2n+1∑
i=1

wti ∗ W̄i ∗ W̄T
i

Utilizing the mean state µ̄ derived from the sigma points, we
can compute the covariance estimate P̄ along with the sigma
disturbances W0i centered around the mean.

W̄i =

(
qiq̄

−1

ω̃i − ¯̃ω

)
Now, compute the measurement-updated transformed sigma

points,

Zi =

(
qigq

−1
i

ω̃k

)
where g is the gravity vector. Now, compute z̄k = meanZi.
Compute measurement model covariances:
The covariance corresponding to the measurement model

update is computed as,

Pzz =

2n+1∑
i=1

wti ∗ ϕi ∗ ϕT
i

here,

ϕi =

(
qiq̄

−1

ω̃i − ¯̃ω

)
The quaternions and omegas above correspond to the ones

in Z.
The innovation term is given by:

νk = zk − z̄k



Here, zk is the observation, i.e., stacked accelerometer and
gyroscope readings.

The innovation covariance is calculated using,

Pνν = Pzz +R

Here, R is the measurement model covariance.
The cross-covariance is calculated as,

Pxz =

2n+1∑
i=1

wti ∗ W̄iϕ
T
i

Update Kalman Gain, State Covariance, and State:
The Kalman gain is calculated as,

Kk = P̄xzP
−1
νν

Update state as,

x̂k = ¯̄xk +Kkνk

Update State Covariance as,

Pk = P̄k −KkPννK
T
k

V. RESULTS

The plots for the 6 training data sets are shown in Figs.
1, 2, 3, 4, 5, 6. Each plot has three subplots corresponding
to roll, pitch, and yaw respectively. There are 5 legends in
each subplot for the orientation computed from gyroscope,
accelerometer, complementary filter, vicon data, Madgwick
filter and Unscented Kalman Filter.

Furthermore, Test data was released 24hrs before the sub-
mission deadline of this project. The same code was tested on
it as well and the following results are seen:



Fig. 1. Roll Pitch Yaw angles for data set 1



Fig. 2. Roll Pitch Yaw angles for data set 2



Fig. 3. Roll Pitch Yaw angles for data set 3



Fig. 4. Roll Pitch Yaw angles for data set 4



Fig. 5. Roll Pitch Yaw angles for data set 5



Fig. 6. Roll Pitch Yaw angles for data set 6



Fig. 7. Roll Pitch Yaw angles for test set 1



Fig. 8. Roll Pitch Yaw angles for test set 2



Fig. 9. Roll Pitch Yaw angles for test set 3



Fig. 10. Roll Pitch Yaw angles for test set 4



VI. VIDEOS

The videos comparing the orientation estimated using the
different methods can be found at videos

VII. CONCLUSION

In this project we implemented a Unscented Kalman filter,
Madgwick filter and a complimentary filter to estimate the ori-
entation of a 6-DOF IMU. The orientation estimated using the
filters is compared with the ground truth orientation obtained
from a vicon motion capture system. The results show that the
Uscented Kalman filter is better at estimating the orientation
than the independent sensors and the complimentary filter and
Madgwick filter especially when there is jerky motions.
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