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Abstract—This project presents the implementation of Non-
stinky Unscented Kalman Filter to estimate the 3D orientation
of the IMU (ArduIMU+ V2) by reading the acceleration and
the gyroscope values given by it. A Madgwick Filter and a
Complementary Filter is also implemented based on the fusion
of the values from the accelerometer and the gyroscope to
obtain the orientation. The orientation estimated by the filters
is then compared with the ground truth from the Vicon motion
capture system.

I. IMPLEMENTATION

A. Reading and Appropriating the Data

The data is obtained from six degree IMU, 3-axis
gyroscope and 3-axis accelerometer fitted on a drone. The
orientation of the IMU recorded from the VICON motion

capture is also provided. The data for each correspondence is
provided in a .mat file. The IMU data exists as:

[ax, ay, az, wz, wx, wy]

The VICON data meanwhile stores the timestamps ts and
the orientation in a 3x3 Rotation matrix denoting Z-Y-X
Euler angles for N time instances. The parameter values for
the IMU are also provided in a 2x3 vector containing the
Scale and Bias values.

The acceleration has been converted into m/s2. The formula
implemented in the code is:

ā = (a · scale+ bias) · g

The angular rates have been converted into rad/s−1.

ω̄ =
3300

1023
· π

180
· (ω − bg)

The bias for angular rate conversion is obtained by calcu-
lating the average of the first couple hundred values of each
angular rate from the IMU data.

B. Implementation of the Methods to estimate Orientations

Methodology
We use four methods to estimate the orientation of the
IMU. The first method uses only the gyroscope readings for
attitude estimation, while the second uses the accelerometer

Fig. 1. 3D Rotation

readings. We also implement a Complementary filter and
Madgwick filter by fusing the readings from both gyroscope
and accelerometer.

Rotation Matrix using R-P-Y Euler Angles Method

The attitude is calculated from the roll, pitch and yaw rate
by using the 3D rotation matrix formula notation in Fig 1.

1) Orientation From Gyroscope Measurements:

Using Integration:

• The function iterates through the IMU timestamps
and gyroscope measurements obtained from the
IMU data.

• For each timestamp, the time difference between
the current and previous timestamps is calculated.

• The orientations are updated using the roll, pitch,
and yaw angles calculated above w x, w y, w z.

2) Orientation from Accelerometer Measurements:

• The second method used only the accelerometer
readings for attitude estimation.

• The orientation is returned as well as the roll,
pitch and yaw values stored as a vector are returned.

• The formula is used keeping in mind IMU is only
rotating and that the acceleration due to gravity is
in the Z-axis.



Roll , ϕ = tan−1

(
ay√
a2x + a2z

)

Pitch , θ = tan−1

 −ax√
a2y + a2z



Yaw , ψ = tan−1


√
a2x + a2y

az



3) Complementary Filter:

• We low pass the accelerometer measurement data
as described below. The alpha for Low Pass filter is
taken as 0.2

Fig. 2. Accelerometer LPF

• We high pass the gyroscope measurement data as
described below. The alphs for High Pass filter is
taken as 0.2.

Fig. 3. Gyroscope HPF

• The two measurements are fused into one using
a α value that weighs the two. The alpha for
complementary filter is taken as 0.5.

• The output orientation is stored for plotting.

4) Madgwick Filter:

The newer method used for the above estimated attitudes
is Madgwick filter. This filter formulates the problem in
quaternion space.

• We begin by calculating the readings for orientation
obtained only from the gyroscope and only from the
accelerometer, in the quaternion notation.

• Normalise the quaternion notation orientation we
calculated in the above steps using formula in Fig
2.

• The second step is to perform the orientation in-
crements from the accelerometer. Let our initial
estimate begin at the quaternion [1 0 0 0].

Fig. 4. Euler Angles to Quaternion Conversion

• We calculate the orientation estimate from the gy-
roscope using the formula below.

I
W q̇ω,t+1 =

1

2
W q̂est,t ⊗

[
0

Iωt+1

]
(1)

• The function f formulated for the compliance of the
values and the Jacobian (J) are calculated and their
product is used to get our gradient from our previous
estimate.

∇f
(
I
W q̂est,t,

W ĝ, I ât+1

)
= JT

(
I
W q̂est,t,

W ĝ
)
∇f

(
I
W q̂est,t,

W ĝ, I ât+1

)
(2)

where

J
(
I
W q̂est,t,

W ĝ
)
=


−2q3 2q4 −2q1 2q2

2q2 2q1 2q4 2q3

0 −4q2 −4q3 0



and

f
(
I
W q̂est,t,

W ĝ, I ât+1

)
=


2 (q2q4 − q1q3)− ax

2 (q1q2 + q3q4)− ay

2
(
1
2 − q22 − q23

)
− az


(3)

• Update Step: The normalised gradient is multiplied
by β and that product is subtracted from the new
gyroscope measurement estimate.



The term beta is the trust ratio between the
accelerometer and gyroscope values and is set to
0.09.(Manually tuned)

• Calculate use the product of the update step and the
difference in the time step.

• The new estimate is given as the sum of the nor-
malised previous estimate and the product above.
See the formula below.

I
W q̇est,t+1 =I

W q̇ω,t+1 +
I
W q∇,t+1

• Repeat the steps at each time instant.
• Estimates calculated at each time instant are con-

verted to the Euler angle representation.

sin(pitch) = 2 · (w · y − z · x)

pitch =


π
2 if sin(pitch) > 0

−π
2 if sin(pitch) < 0

arcsin(sin(pitch)) otherwise

sin(yaw + pitch) = 2 · (w · z + x · y)

cos(yaw + pitch) = 1− 2 · (y2 + z2)

yaw = arctan 2(sin(y + p), cos(y + p))

sin(roll) = 2 · (w · x− y · z)

roll =


π
2 if sin(roll) > 0

−π
2 if sin(roll) < 0

arcsin(sin(roll)) otherwise

where, y is yaw and p is pitch.

5) ”Non-Stinky” Unscented Kalman Filter:

Unlike Complementary filter and Madgwick filter,
Unscented Kalman filter (UKF) uses a probabilistic
Bayesian approach for orientation estimation and
addresses non-linear models. It predicts and updates the
estimate based on nonlinear process and measurement
models by choosing a set of sigma points. These sigma
points capture the distribution of state variables with
mean and covariance values associated with them.

a) Generation of Sigma Points: Sigma points
are calculated based on the current state, the
covariance matrix P and the process noise Q as

follows.

S =
√
Pk−1 +Q

Wi,i+n = columns
(
±
√
2n · (Pk−1 +Q)

) (4)

The list of 2n sigma points X generated from
nxn covariance matrix is represented as a state
consisting of a quaternion and angular velocity.

Xi = x̂k−1 +Wi (5)

Xi =

(
qk−1qW

ω⃗k−1 + ω⃗W

)
(6)

b) Process Model: The process model for state tran-
sition computes differential quaternion based on
prior angular velocities (assuming that the angular
velocity remains constant during the time step ∆t)
and updates quaternion orientation. The updated
state consists of the quaternion and angular veloc-
ity.

ωk = ωk−1

q∆ =

[
cos

(
|ω⃗k−1|∆t

2

)
,
ω⃗k−1

|ω⃗k−1|
sin

(
|ω⃗k−1|∆t

2

)]
(7)

The sigma points are transformed over the time
step ∆t using the process model for a new set of
sigma points, Y .

Yi = A (Xi, 0) =

(
qkqwq∆
ω⃗k +−→wω

)
(8)

c) Mean of Sigma Points: The weighted average
of sigma points is estimated by computing the
quaternion mean and angular velocity mean. The
quaternion mean is estimated using the Intrin-
sic Gradient Descent method (for ensuring unit
quaternion). It is computed using barycentric mean
e⃗ signifying the deviation between the estimated
mean q̄ and the real mean orientation.

e⃗ =
1

2n

2n∑
i=1

e⃗i (9)

where e⃗i is the error vector giving the relative
rotation between set element qi and the estimated
mean of the last iteration q̄t,

e⃗i = qiq̄
−1
t (10)

The angular velocity mean is computed by,

ω̄ =
1

2n

2n∑
i=1

ωi (11)



d) Priori State Vector Covariance Update: The
Priori State Vector Covariance is computed using
the sigma point deviations, W ′

i calculated by sub-
tracting mean state from each sigma point.

W ′
i =

(
qiq̄

−1

ω⃗i − ω⃗

)
(12)

P̄k =
1

2n

2n∑
i=1

W ′
iW ′T

i (13)

P̄k =
1

2n

2n∑
i=1

[Xi − x̄] [Xi − x̄]
T (14)

e) Measurement Model: The measurement models
for gyro and accelerometer measurements, H1 and
H2 can be used to compute predicted measure-
ments Zi from the sigma points and the average
predicted measurement z̄k.

H1 : z⃗rot = −→w k +−→v rot
H2 : z⃗acc = g⃗′ +−→v acc

(15)

Zi =

(
q−1
i gqi
ω⃗k

)
(16)

z̄k =
1

2n

2n∑
i=1

Zi (17)

f) Measurement Estimate Covariance: The covari-
ance of predicted measurements Zi can be com-
puted similarly as equation 13 as follows, where
ϕ′i is the measurement deviation calculated by
subtracting predicted measurement from the set.

P̄zz =
1

2n

2n∑
i=1

ϕ′iϕ
′T
i (18)

where,

ϕ′i =

(
qiq̄

−1

ω⃗i − ω⃗

)
(19)

P̄zz =
1

2n

2n∑
i=1

[
Zi − z−k

] [
Zi − z−k

]T
(20)

The difference between the predicted measure-
ment z̄k and the actual measurement zk is called
Innovation, vk that predicts the deviation in the
UKF’s predicted measurements and the observed
measurements. The covariance in the Innovation,
Pvv is computed as,

Pvv = Pzz +R (21)

where, R is measurement noise covariance.

g) Cross Correlation Matrix: Cross correlation ma-
trix, Pxz helps in quantifying effects of changes of

predicted state affect on predicted measurements.
It is used to calculate kalman gain and helps in
weighing the predicted state estimate. Large values
of Pxz indicates filter giving more weight to the
prediction. Pxz is calculated as follows,

P̄xz =
1

2n

2n∑
i=1

W ′
iϕ

′T
i (22)

P̄xz =
1

2n

2n∑
i=1

[
Yi − x̂−k

] [
Zi − z−k

]T
(23)

and Kalman gain, Kk,

Kk = PxzP
−1
νν (24)

Further, the state and its covariance are updated as
the below equations.

x̂k = ˆ̄xxk +Kkνk (25)

Pk = P̄k −KkPννK
T
k (26)

II. RESULTS

The plots of the angles estimated from Complementary
Filter, Madgwick Filter and Unscented Kalman Filter are
plotted with angles from the VICON data.

Please see the figures attached here. The link to the videos
obtained after running the rotplot.py and can be referred
to with the name of the data set where 1-6 is for the given
data set and 7-10 is the test sets.

Link: rotplots
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Fig. 5. Plots for Dataset 1

Fig. 6. Plots for Dataset 2

Fig. 7. Plots for Dataset 3

Fig. 8. Plots for Dataset 4

Fig. 9. Plots for Dataset 5

Fig. 10. Plots for Dataset 6

Fig. 11. Plots for Test Dataset 1

Fig. 12. Plots for Test Dataset 2



Fig. 13. Plots for Test Dataset 3

Fig. 14. Plots for Test Dataset 4
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