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Abstract—This report attempts to explain attitude
estimation techniques for orientation determination
using data from a 6 DoF (3-DoF gyroscope + 3-DoF
accelerometer) Inertial Measurement Unit. Four main
approaches are investigated: accelerometer-based es-
timation, gyroscope-based estimation, complementary
filter blending of both accelerometer and gyroscope
data, and Madgwick Filter. To enhance the validity
of our findings, we have introduced Vicon data as the
benchmark, serving as the ground truth against which
we evaluate the accuracy of the attitude estimates
produced by the different approaches. It is seen that
a Madgwick The filter gives the best performance of
all.

I. INTRODUCTION

In aerial robotics applications, precise determi-
nation of a system’s orientation is crucial for pro-
viding feedback to autopilot systems or controllers.
The Inertial Measurement Unit (IMU) serves as
a favored sensor for this purpose, comprising tri-
axis gyroscopes and accelerometers. Gyroscopes
gauge angular velocity, allowing integration over
time to approximate orientation. Nonetheless, this
numerical integration is vulnerable to accumulating
errors, leading to gradual divergence from the true
orientation. Conversely, accelerometers measure the
Earth’s gravitational field, yielding orientation esti-
mates within an absolute frame of reference. Yet,
any translational motion distorts gravity measure-
ments, resulting in compromised orientation esti-
mates. This challenge is effectively addressed using
a Madgwick filter, which blends accelerometer and
gyroscope data from the IMU to yield a unified

orientation estimate.
Link To Videos: Click Here

II. DATA PRE-POCESSING

This section outlines the methodologies em-
ployed to estimate and rectify biases, as well as
scale the raw data values obtained from the IMU
into SI units for both the accelerometer and gyro-
scope sensors.

A. Accelerometer IMU Data

Prior to analysis, the data extracted from the IMU
necessitates preprocessing to both convert it into
meaningful physical units and counteract any inher-
ent instrumentation bias. The subsequent expression
explains the conversion process of raw accelerom-
eter readings, denoted as a = [ax ay az]

T , into
acceleration data represented in m/s2.

âi = 9.81((ai × sa,i) + ba,i)

Here âi represents ai in physical units, bai repre-
sents bias and sai represents the scale factor for ith

axis. Where i ∈ x, y, z axis.

B. Gyroscope IMU Data

Similarly, the data originating from the gyro-
scopes underwent processing to convert the raw
gyro angular velocity reading ω = [ωx ωy ωz]

T

into angular velocity data in rad/s, the following
expression is used.

ω̂i =
3300

1023
× π

180
× 0.3× (ωi − bg,i)

https://drive.google.com/drive/folders/1V53MIJ7kAEoUTclo44NAsR7S43FgvC0x?usp=drive_link


To compute the bias term, the average of the
initial 200 gyroscope measurements is derived. This
assumption is based on the stability of the gyro-
scope during the initial 200 measurements within
each dataset, which is utilized to establish the
initial angular velocities. For each axis bias term
is determined. Where k = 200.

bg,i =
1

k

k∑
i=1

ωi

III. ORIENTATION DETERMINATION

In this section, we have addressed the method-
ology for ascertaining orientation from separately
preprocessed accelerometer and gyroscope data. By
leveraging the strengths of each sensor, we have
formulated the implementation of a complementary
filter. This filter integrates the favorable aspects of
both datasets to generate an enhanced orientation
estimation. Finally, the orientation obtained through
the implemented methods is compared with the
ground truth observations extracted from the Vicon
dataset.

A. Orientation from accelerometer
The estimated orientation values were derived

from the accelerometer data by determining how
the acceleration vector aligns with the familiar ori-
entation of the gravitational vector. This estimation
was achieved using following simple trigonometric
relationships.

Roll(ϕ) = tan−1(ay/
√
(ax)2 + (az)2)

Pitch(θ) = tan−1(ax/
√
(ay)2 + (az)2)

Y aw(ψ) = tan−1(
√

(ax)2 + (ay)2/az)

However, it’s crucial to acknowledge that this
method of attitude estimation has limitations. Be-
cause of the symmetry of the gravity vector around
the z-axis, this approach is inherently imprecise
for Yaw measurements. Moreover, distinguishing
between acceleration stemming from rapid move-
ment and that resulting from gravity is challenging.
As a result, this method isn’t suitable for offering
accurate estimates during swift motions over brief
time intervals.

B. Orientation from Gyroscope

The gyroscope values are integrated to obtain the
angles. The integration is performed using quater-
nions due to their inherent advantages in repre-
senting orientation changes. Unlike Euler angles,
quaternions do not suffer from gimbal lock, which
is a phenomenon where a particular orientation
configuration limits the range of motion in certain
directions. This makes quaternions more robust for
continuous rotations. Quaternions comprise of a
single real element (represented by the subscript 0)
and three imaginary elements (represented by the
subscripts 1, 2, and 3). The following expression
describes the attitude quaternion.

q = [q0 q1 q2 q3]
T

q0
2 + q1

2 + q2
2 + q3

2 = 1

The updated quaternions is calculated as below:

α∆ = |ω⃗k|∆t

e⃗∆ =
ω⃗k

|ω⃗k|

qk =

(
cos

(
α∆

2

)
, e⃗∆sin

(
α∆

2

))
To calculate current state quaternion the follow-

ing equations are used:

α = |ω⃗k|

e⃗ =
ω⃗k

|ω⃗k|

qk =
(
cos

(α
2

)
, e⃗sin

(α
2

))
Now, the new state quaternion is described as (k

is the current state and k + 1 is the next state),

qk+1 = qkq∆

Then euler angles are calculated from the quater-
nions as follows:

Roll(ϕ) = tan−1

(
2(q0q1 + q2q3)

1− 2(q12 + q22)

)
Pitch(θ) = sin−1(2(q0q2 − q3q1))



Y aw(ψ) = tan−1

(
2(q0q3 + q1q2)

1− 2(q22 + q32)

)
This method generally performs well, but of-

fers no way to compensate for noise in the IMU
readings, therefore the estimates tend to drift and
become more inaccurate with time.

IV. COMPLEMENTRY FILTER

Following the independent calculation of atti-
tude using accelerometer and gyroscope data, the
derived attitudes can be merged to enhance the
overall attitude estimation. The complementary fil-
ter employs a predetermined weighted average of
both individual components to produce a refined
attitude estimation. This blending of accelerometer
and gyroscope information optimally leverages the
strengths of each source to yield a more accurate
and stable attitude representation.

ϕθ
ψ


Comp

=

α 0 0
0 β 0
0 0 γ

 ·

ϕθ
ψ


Acc

+

1− α 0 0
0 1− β 0
0 0 1− γ

 ·

ϕθ
ψ


Gyro

Here α, β and γ are the mixing parameters. α was
chosen as 0.75, β was chosen as 0.75 and γ was
chosen as 0.0 . Effectively the gyro measurements
are high pass filtered to remove drift and accelerom-
eter measurements are low pass filtered to remove
noise.

V. MADGWICK FILTER

Sebastian Madgwick introduced an orientation
filter designed for IMUs containing tri-axial gyro-
scopes and [1]. This filter utilizes a quaternion-
based representation of orientation to accurately
depict three-dimensional orientations, avoiding the
problematic singularities encountered with Euler
angle representations. This approach enables the
utilization of accelerometers within an analytically
derived and optimized gradient-descent algorithm.
This algorithm calculates the quaternion derivative
that characterizes the gyroscope measurement error
direction.

A. Orientation increment from accelerometer

In order to derive the attitude quaternion q̂ from
the gravitational acceleration vector g and the data
from a 3-axis accelerometer sensor, which supplies
gravity vector information in the body frame as ax,
ay , and az , an optimization problem is structured
as outlined below.

min
I
W q̂∈R4×1

f(IW q̂,W ĝ,I â) (1)

f(IW q̂,W ĝ,I â) =I
W q̂∗ ⊗W ĝ ⊗I

W q̂ −I â (2)

where,

I â = [0 ax ay az]
T

W ĝ = [0 0 0 1]T

Here q∗ denotes the conjugate of q and ⊗
denotes the quaternions multiplication. And I â and
W ĝ are normalized vectors.

The solution to the above problem can be
computed using the gradient descent algorithm and
increment change can be calculated as follows:

∇f(IW q̂est,t,
W ĝ,I ât+1) = JT (IW q̂est,t,

W ĝ)f(IW q̂est,t,
W ĝ,I ât+1)

(3)

∇f(IW q̂est,t,
W ĝ,I ât+1) =

2(q2q4 − q1q3)− ax
2(q1q2 + q3q4)− ay
2( 12 − q22 − q23)− az


(4)

JT (IW q̂est,t,
W ĝ) =

−2q3 2q4 −2q1 2q2
2q2 2q1 2q4 2q3
0 −4q2 −4q3 0


(5)

I
W q̂∇,t+1 = −β ∇f(IW q̂est,t,

W ĝ,I ât+1)

||∇f(IW q̂est,t,W ĝ,I ât+1)||
(6)

Here β can be considered as a step size or a
tunable trade-off parameter that determines when
the gyro has to take over the acc.



B. Orientation increment from gyro

The rate of change of the attitude quaternion
I
W q̇ω,t+1 can be calculated from the measured 3-
axis gyroscope angular velocities ωx, ωy , ωz and
the current quaternion estimate I

W q̂est,t as follows.

I
W q̇ω,t+1 =

1

2
I
W q̂est,t ⊗ [0, Iωt+1]

T (7)

C. Fuse Measurements

The increments calculated from the accelerom-
eter and gyro are fused together to obtain the
estimated attitude I

W q̂est,t+1

I
W q̇est,t+1 = IW q̇ω,t+1 +

I
W q∇,t+1 (8)

I
W qest,t+1 =I

W q̂est,t +
I
W q̇est,t+1∆t (9)

Here,∆t is the time elapsed between the
timestamp t and t + 1. The initial attitude
I
W q̂est,t=0 estimation is assumed that the device is
at rest.

All the above steps of orientation increment
from the accelerometer, orientation increment
from the gyroscope, and measurement fusion are
repeated at each timestamp. It must be noted that
resultant I

W qest,t+1 quaternion moves out of the
unit quaternion space and thus they no longer
represent the attitude/orientation of the body. To
rectify this they must be normalized to I

W q̂est,t+1

after every iteration that they are calculated.

VI. RESULT

Plots depicting the calculated Roll (ϕ), Pitch
(θ), and Yaw (ψ) obtained from various methods
are generated for each dataset (1 to 6). These
methods encompass individual accelerometer and
gyroscope readings, complementary filter as well
as the Madgwick filter. In order to evaluate their
accuracy, the Vicon measurements are regarded
as the established ground truth against which the
performance of each method is assessed. The
evaluated dataset from 6 to 10 are test datasets and
do not contain Vicon measurements

VII. CONCLUSION

The results demonstrate varying accuracy among
different attitude estimation methods, with the
madgwick filter showing the closest alignment to
Vicon truth data. While roll and pitch are well-
estimated across all methods, yaw suffers due to
accelerometer limitations. Gyro-based estimation is
prone to drift as integration errors accumulate with
time. This affects combined methods, especially
yaw where accelerometer correction for gyro drift is
absent.Consequently, the combined and Madgwick
filters exhibited fluctuating performance, especially
in the yaw axis, where the accelerometer lacked the
ability to furnish any orientation estimate for the
correction of gyro drift. While the Madgwick filter
may not offer a flawless attitude estimate, it demon-
strates robustness by effectively mitigating the im-
pact of gyro reading errors and handling discontinu-
ities in raw data without compromising orientation
tracking accuracy. Additionally, the Madgwick filter
boasts a relatively straightforward implementation
and minimal computational overhead, positioning
it as a superior choice compared to other attitude
estimation methods explored.
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1. TRAIN DATASET 1

Fig. 1: Comparison of Attitude Estimations for dataset 1



2. TRAIN DATASET 2

Fig. 2: Comparison of Attitude Estimation for dataset 2



3. TRAIN DATASET 3

Fig. 3: Comparison of Attitude Estimation for dataset 3



4. TRAIN DATASET 4

Fig. 4: Comparison of Attitude Estimation for dataset 4



5. TRAIN DATASET 5

Fig. 5: Comparison of Attitude Estimation for dataset 5



6. TRAIN DATASET 6

Fig. 6: Comparison of Attitude Estimation for dataset 6



7. TEST DATASET 7

Fig. 7: Comparison of Attitude Estimation for dataset 7



8. TEST DATASET 8

Fig. 8: Comparison of Attitude Estimation for dataset 8



9. TEST DATASET 9

Fig. 9: Comparison of Attitude Estimation for dataset 9



10. TEST DATASET 10

Fig. 10: Comparison of Attitude Estimation for dataset 10
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