RBE 549 Project 4 Phase 2
Deep Visual-Inertial Odometry

Niranjan Kumar Ilampooranan
MS Robotics Graduate Student
Worcester Polytechnic Institute

Abstract—In this report, network architectures and loss functions
are proposed that is used to estimate odometry/ relative pose
between scenes using IMU (Inertial measurement unit) readings
and camera frames. The process used to generate synthetic data
for training and testing of these models is discussed along with
recorded results.

I. INTRODUCTION

As seen in the classical approach used in phase 1 to estimate
odometry using fusion of inertial and visual data, the error
between the ground truth and the estimates were satisfactory.
Yet, there is heavy dependency on the feature tracking and
detection, which raises the question of replacing it with deep
feature matching methods. Although straightforward for visual
data, the same cannot be said for the data collected by IMU.

Given the scarcity in previous work on using deep learning
methods to estimate odometry using visual-inertial data fusion,
this work aims to propose three network architectures that
could be trained on such data to estimate the relative states
of the camera. The first network (VO) predicts the relative
poses using only frames, while the second network (IO)is fed
IMU data to predict the relative pose. Comparison between
the performance of two different architectures for VO is also
shown in this work. Finally, the third network uses both the
visual and inertial data for the same task. The dataset used for
this case along with the network architectures, loss functions,
and results are discussed in further sections.

II. DATASET

Given that the problem involves estimating the odometry
from combination of images and 6-DoF IMU data, using
preexisting datasets would be another challenge by itself.
To alleviate this issue, we have opted for synthetic data
generation by scene rendering in Blender. To train, validate,
and test the networks, sample trajectories were generated using
simple primitives. These include simple circular trajectory,
simple helical ascent, and the former combined with sinusoidal
variation in ascent for additional complexity. The plots for
visualization are shown in the figure below.

Thanikai Adhithiyan Shanmugam
MS Robotics Graduate Student
Worcester Polytechnic Institute

Fig. 2. Camera movement - Combined Trajectories

Using the Blender models and quadrotor dynamics given by
Prof. Sanket’s Autonomous Aerial Robotics course, the image
dataset is generated [1]. Quite simply, the trajectory data is
fed to the quadrotor (or a flying object with camera facing
downwards) to generate an adequately realistic motion profile
and state values at each timestamp along with scene capture.
As far as the visual features are concerned, a large plane with
image texture rich in features is placed on the ground, essential
for good odometry estimation using visual data. The image
texture used in our case is shown below.

Fig. 3. Image Texture used in Blender

In the case of IMU data, multiple ways exist to generate,
given the trajectory data. One such method is finding the
first and second order derivatives of the trajectory using the
data, after which noise is added (as done in [2]). Alternative
method include using MATLAB’s IMU model, which provides
accelerometer and gyroscope readings, given the acceleration,
angular velocities and orientation data. Out of these two,
the former was used to generate the necessary IMU data.
Furthermore, only every 10" frame is considered for IMU
datastream. Hence for the model training, 20000 IMU readings
and 2000 images were used. A sample scene of camera moving
along the proposed trajectory in Blender while gathering the
image data is shown below.

Finally, dataset for 8 trajectories were generated, of which 7
are used for training and 1 is used for testing (helical ascent).
The observations and results for these shall be discussed in
further sections.

Fig. 4. Blender - Scene capture of Image Texture

III. NETWORK ARCHITECTURE
A. VO Architecture

We conducted a literature review on previous year papers
to learn a optimal network for Visual Odometry and found
LSTM+CNN and Deep VO (fully convolutional) interesting.
We trained initally a circle trajectory on the both the networks
and found out both provided almost similar losses.

The architecture we finalized for Visual Odometry is a
network of Convolutional Layers with Fully Connected Layer
each for classifying the pose and the orientation quaternion.
The input given in this network is a stack of 2 frames of
timestamp t and t+1. The model is a supervised network
where the ground truth is the pose and orientation data of the

drone obtained from the blender environment. The model has
9 layers of 2D convolutional layers and 3 Fully Connected
Layers. Max Pooling has been used in alternate layers to
reduce computational time and the activation function ReLu
has been used in all the layers except the final regression layer.
[?] has suggested using Leaky ReLu provided better results
but the dataset generated provided better results on the relu
activation function. The LSTM+CNN model had 128 hidden
layer with 2 LSTM layers and 3 Convolutional Layers which
was passed after the LSTM followed by 2 Fully Connected
Layers.

The training on both LSTM+CNN and DeepVO overfitted
the data and peformed exceptionally on the training dataset
but failed to provide good results on the test data. However,
we decide to move on with DeepVO as it was computationally
faster than LSTM+CNN and when training over infinte epochs
to get the optimal number of epoch, DeepVO got a stable loss
after 25 epochs while LSTM+CNN went over 100 epochs and
was still fluctuating. The architecture of both networks used
can be found below

Convad(128, 256,
ride=2)

Conv2d(256,

256, 3x3)

Conv2d(256, 512,
33, stride—2)

Linear 1o 128,
ReLU to Linear
32 to ReLUJ
to Linear 4

Fig. 5. VO CNN Architecture

Input Image

——

Reshape
& LETM

R |
LSTAM Output
Reshape

T e
Conv2d(6,

16, 3x3)
—_———
Rel.l!
—_— r

—
Cony2d(16,
32 Iy

-4

ReL.lJ

—_——

Concatenate

r———
Linear{ 2051840,
10624

—
— e,

Rel.l!

R —

Linear{1024,
128)

ReLll

Linear{128, T)

Cntput

Fig. 6. VO LSTM Architecture

B. 10 Architecture

The IO Architecture predicts the relative pose between
frames in sequence. We thought to use a simple RNN archi-
tecture which takes in IMU data of 50 frames in sequence.
However, this architecure was not learning anything at all.
We tried 2 loss functions discussed in the loss subsection and
still the model was not training at all. We got a stable error
of 2.5 relative pose. Therefore, we implemented the LSTM
architecture with hidden layers 512 and 2 LSTM layers. We
then regressed 3 Fully connected Layers seperately for pose
and orientation.

The LSTM also overfitted the intital circle trajectory we
trained. The training merged with other trajectory was in vain
as the model updates its parameters with the new trajectory

and forgets the previous trajectory weights. We tried to rectify
this error but could not implement a effective solution owing
to time constraints.

Input

1

Unsqueeze

I

LSTM

|

Reshape

|

FC 128

i

ReLU

|

1 e Ft—" .I
| FC 3 (Pose) (Orientation)

Concatenate

Fig. 7. 10 Architecture

C. VIO Architecture

The Visual Inertial Odermetry architecture was combined
from the VO and IO architecture. The VO convolutional layers
were merged with IO LSTM layers and passed to seperate fully
connected layers. The architecture implemented can be found
below.

I

Conv 664

H

Conv 643128

H

Conv
128256

H

Conv
256256

|

Conv
256512

Conv
512512

H

Conv
5121024

|

Flatten LSTM G512

H

FC 512128

.
ot

H

FC 115232

H

Orientation
324

Pose 32=3

Qutput

Fig. 8. VIO Architecture

D. Network Parameters

The 3 networks uses the Adam Optimizer with learning rate
of 0.001 and 51 = 0.9 and B2 = 0.999. The batch size used
is 16 and standardization is done for the images and also the
IMU DOF for more effective training. We tried running on
100 epochs for all 3 models but stopped at 25, 38, 30 epochs
for VO, 10, VIO models as there was not much learning after
these epochs.

E. Loss Functions

We did an intensive study on different loss functions to
select the optimal one. For all 3 models, the loss was calculated
between the relative pose i.e difference between the current
frame and the next frame. At first, we used MSE Loss on the
whole output and to our surprise we over-fitted the training
data. We tried to implement MSE Loss individual on pose and
orientation. The results were better for VO architecture but was
not helping in learning the IO architecture. We then referred
[3] which implemented geodesic loss for the quaternion output.

However, our data was not learning at all in both in LSTM
and CNN network. Therefore, instead of the geodesic loss, we
implemented the loss function defined in the official DeepVO
implemenatation paper [4] given below for all 3 models but
the data was overfitting but less compared to MSELoss.

pose_loss = M SE(output, label) (1)
quat_loss = MSE(1 — MSE(output * label)) (2)

total_loss = pose_loss + B * quat_loss 3)

Here, 8 is the loss factor which we defined to be 150 as
mentioned in the above cited paper.

IV. RESULTS

In this segment, we create a graphical representation of
the discrepancy between the Actual Path and the Predicted
Trajectory using the RPG trajectory evaluation toolbox.

2.0 1
L5 -
1.0 -
0.5
0.0
0 20 40 60 80 100 120
Fig. 9. VO Test Loss
1.2
1.0 -
0.8
0.6
0.4
0.2
0.0 4 o YT TPT RO I

T T T T T T
0 500 1000 1500 2000 2500 3000

Fig. 10. VO Train Loss

Fig. 11. VO Predicted Test - Spiral Trajectory

1.0 1

0.5 1

0.0 4

—-0.5

-1.01

-1.54

-2.0

-2.5 4

® VO Output
® Ground Truth

T T T T
=25 =20 =15 -1.0 -0.5

Fig. 12. VO Predicted Train - Spiral Trajectory

Fig. 13. IO Predicted Test - Spiral Trajectory

Fig. 14. 10 Predicted Train - Spiral Trajectory

0.08
0.06 |
0.04
0.02
0.00 | WMWVA_/\
0 200 400 600 800 1000 1200
Fig. 15. 1O Test Loss
0.4
0.6
-0.8
-1.0
-1.00
-1.25
1.00 -1.50
078 -1.75
—0.5_00 2% —2.00
.000_25 -2.25

0.50 -2.50

Fig. 16. VIO Predicted Test - Spiral Trajectory

0.08 1

0.07 1

0.06 1

0.05 1

0.04 1

0.03 1

0.02 4

0.01 4

0.00 4

o—
w
=
=]
=
v
]
=]
N
]

Fig. 17. VIO Train Loss

0.8 1

0.6 1

0.4

0.2 1

0.0 4

T T
80 100 120

o 4
[
o
B
o
=]
o

Fig. 18. VIO Test Loss

V. FUTURE DIRECTIONS

Some new research directions would include the integration
of complementary sensors, such as event cameras, and deep
learning.

Egomotion is one domain where VIO can be explored
further. Egomotion is the three-dimensional movement of a
camera within its surroundings. In computer vision, egomotion
specifically involves determining a camera’s motion relative
to a fixed scene. For instance, in autonomous navigation
scenarios, egomotion estimation entails discerning a vehicle’s
position as it moves in relation to features like road markings
or observed street signs. This estimation is crucial for enabling
autonomous robots to navigate effectively.

One aspect where current work could be improved would be
in the following. Since the output is composed of sequence of
asynchronous events, traditional frame-based computer-vision
algorithms are not directly applicable. Hence, novel algorithms
must be developed to deal with these cameras.

One research aspect in VIO can be used for human motion
captures. Inertial Data is recording the human pose in the
form of MOCAP. There are research which uses stereo camera
along with MoCAP to actually improve pose estimation for
healthcare as healthcare requires precision.

REFERENCES

[1] “Rbe595-f02-st — hands-on autonomous aerial robotics.”

[2] “prgumd/oystersim,” 10 2023.

[3] S. S. M. Salehi, S. Khan, D. Erdogmus, and A. Gholipour, “Real-time
deep registration with geodesic loss,” CoRR, vol. abs/1803.05982, 2018.

[4] S. Wang, R. Clark, H. Wen, and N. Trigoni, “Deepvo: Towards end-to-end
visual odometry with deep recurrent convolutional neural networks,” in
2017 IEEE International Conference on Robotics and Automation (ICRA),
pp. 2043-2050, 2017.

	Introduction
	Dataset
	Network Architecture
	VO Architecture
	IO Architecture
	VIO Architecture
	Network Parameters
	Loss Functions

	Results
	Future Directions
	References

