
P4: Deep VIO(Phase 2)
1st Venkateshkrishna
Masters in Robotics

Worcester Polytechnic Institute
Worcester, MA 01609
vparsuram@wpi.edu

2nd Mayank, Bansal
Masters in Robotics

Worcester Polytechnic Institute
Worcester, MA 01609

mbansal1@wpi.edu

Abstract—Phase 2 of this project involves using deep learning
to estimate odometry using Visual and Inertial data. The project
is done in three parts: Inertial-only odometry, Vision-only odom-
etry and finally, Visual-Inertial Odometry. The dataset was gen-
erated using MATLAB IMU framework and also, alternatively,
using the OysterSim framework by Professor Sanket. The final
predicted and ground-truth trajectory along with loss values are
reported for each.

I. PHASE 2: DEEP LEARNING APPROACH

A. Dataset Generation

The IMU dataset was generated using the MATLAB IMU
framework which requires the waypoints, the sample rate of
IMU, and the times at which each waypoint is arrived at.
This then generates the corresponding position, orientation,
acceleration and angular velocity values for each timestamp
using interpolation. This data is then passed into the imu object
to obtain the corresponding accelerometer and gyroscope
values. The IMU dataset was generated at a 1000Hz sample
rate and the trajectories are 10 seconds each. The position
and orientation data of each trajectory were used to obtain
image data from Blender at a 100Hz. A number of different
types of trajectories were generated including the ’figure8’,
’tiltedfigure8’, ’3Dfigure8’, oval, and other random open-loop
trajectories.

We also utilized Blender alongside the OysterSim simu-
lation package to generate an alternative dataset for further
validation of our networks. The process began with random
sampling of points within the workspace. Assuming a max-
imum drone velocity of 2 m/s, we fitted a quintic polyno-
mial trajectory through these sampled points. Subsequently,
we sampled these trajectories to obtain points paired with
timestamps. These data points were then input into oyster sim,
which controlled the robot’s movement in Blender. We set the
IMU sample rate at 300 Hz and the camera frame rate at 30
Hz to simulate realistic drone behavior.

B. Loss Function

For position estimation, we commonly use the Root Mean
Squared Error (RMSE) to quantify the discrepancy between
predicted and actual values. The RMSE is defined as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (1)

Fig. 1: Trajectory of figure 8

Fig. 2: Trajectory of 3D figure 8

where ŷi represents the predicted values, yi represents the
actual values, and n is the number of samples.

For quaternions, which represent orientations, the loss is
calculated using the mean squared error of the angle between
the predicted quaternion q̂ and the true quaternion q. This loss
aims to minimize the angular difference between them and is
defined as:

L(q, q̂) = 1− ⟨q, q̂⟩2 (2)

Here, ⟨q, q̂⟩ denotes the dot product between the two quater-
nions, ensuring that the loss is minimized when the orientation
predicted by the model aligns closely with the true orientation.



Fig. 3: Random Trajectory

C. Deep IO

Our neural network architecture consists of two fully
connected layers followed by two LSTM layers, which are
designed to handle the temporal sequences inherent in our
dataset. The output from the LSTM layers is then processed
through one additional fully connected layers. The network
accepts input in the form of a 10x6 matrix, where ’10’
represents the sequence or window size, and ’6’ corresponds to
IMU data—specifically, accelerometer and gyroscope readings
across three axes.

The network’s output is a 1x7 vector. The first three ele-
ments of this vector represent the position increment relative
to the previous position, while the next four elements reflect
changes in orientation, expressed as a quaternion, from the
previous orientation. The use of LSTM layers is crucial for our
model as it needs to learn from sequences of data, capturing
temporal dynamics effectively. This setup allows the network
to predict changes in both position and orientation based on
the sequential IMU input.

D. Deep VO

In our Visual Odometry system, we concatenate two consec-
utive images channel-wise to form the input for the network.
The output structure mirrors that of the Inertial Odometry
(IO) network, producing a 1x7 vector that captures the relative
position and orientation changes.

The image input undergoes initial processing through two
convolutional neural network (CNN) layers. Following each
CNN layer, we apply a ReLU activation function to introduce
non-linearity, perform max-pooling to reduce spatial dimen-
sions while retaining important features, and conduct batch
normalization to stabilize and accelerate training.

After processing through the CNN layers, the data passes
through two fully connected layers. Internally, the network es-
timates the homography between the two consecutive images.
This homography is then utilized to calculate the odometry,
effectively estimating the movement and orientation changes
based on visual inputs. This method allows for precise tracking

Fig. 4: Training loss for Deep IO

Fig. 5: Predicted vs Ground-truth IO output

Fig. 6: Predicted vs Ground-truth IO output(top view)



Fig. 7: Network architecture for Deep IO

Fig. 8: Training loss for Deep VO

Fig. 9: Predicted vs Ground-truth VO output

of the device’s trajectory in environments where other sensory
data might be limited or unreliable.

E. Deep VIO

In our Visual-Inertial Odometry (VIO) system, we integrate
the methodologies of the Visual Odometry (VO) and Inertial
Odometry (IO) networks to enhance the accuracy and robust-
ness of our trajectory estimation. The input consists of two
consecutive images alongside the IMU data recorded between
these images. The output, like in the individual systems, is a
1x7 vector detailing relative position and orientation changes.

The processing begins by feeding the images into the VO
network and the IMU data into the IO network separately.
Each network processes its respective inputs and produces its
own 1x7 output vector. These vectors from both networks are
then concatenated to form a preliminary 1x14 vector.

This concatenated vector is subsequently processed through
two fully connected layers. These layers integrate the visual
and inertial information, refining the fusion to produce a final,



Fig. 10: Predicted vs Ground-truth VO(top view)

precise 1x7 output vector that encapsulates both positional
and orientational estimates. This fusion approach leverages the
strengths of both sensory modalities, ensuring more reliable
and accurate odometry under varying conditions.

F. Trajectory Error Evaluation

The Absolute Median Trajectory Error (ATE) was measured
at 56.863 meters, and the Root Mean Square Translation Error
(RMSE) was recorded at 60.235 meters.

G. Conclusion

This project explored our efforts to perform deep learning
based Inertial odometry, visual odometry and finally visual-
inertial odometry. The results were good, especially for IO.
We identified a few problems that we might work on

REFERENCES

[1] Deep VIO home page: link
[2] MATLAB IMU model: link
[3] OysterSim: link

Fig. 11: Network architecture for Deep VO

https://rbe549.github.io/spring2024/proj/p4/
https://www.mathworks.com/help/nav/ref/imusensor-system-object.html
https://github.com/prgumd/Oystersim


Fig. 12: Training loss for Deep VIO

Fig. 13: Predicted vs Ground-truth VIO(top view)

Fig. 14: Predicted vs Ground-truth VIO(top view)

Fig. 15: Network architecture for Deep VIO


	Phase 2: Deep Learning Approach
	Dataset Generation
	Loss Function
	Deep IO
	Deep VO
	Deep VIO
	Trajectory Error Evaluation
	Conclusion

	References

