
Computer Vision - Project 4: Deep and Un-Deep
Visual Inertial Odometry (Phase 2)

Jesdin Raphael
Worcester Polytechnic Institute

Worcester, MA, USA
Computer Science

Email: jraphael@wpi.edu

Harsh Verma
Worcester Polytechnic Institute

Worcester, MA, USA
Robotics Engineering

Email: hverma@wpi.edu

Muhammad Sultan
Worcester Polytechnic Institute

Worcester, MA, USA
Robotics Engineering

Email: msultan@wpi.edu

Abstract—In this phase of the project we build three Deep
Neural Networks to estimate the trajectory of a UAV, using
synthetic data. The first network only used visual data, the
second one only used inertial data and the third one used both.
The first network had a CNN architecture, because the data
included images, the second had LSTM architecture because it
took inertial data which was time-series which LSTM handles
quite well, and the third network was, naturally, a combination
of both.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have seen a sharp rise
in use in recent years for a variety of purposes, including
defense, surveillance, and rescue operations. Robust and pre-
cise assessment of the UAV’s position and orientation play a
critical role in these applications’ success. A common method
for determining a UAV’s pose using camera and inertial sensor
measurements is called visual and inertial odometry (VIO).
However, a number of issues, including sensor noise and
calibration mistakes, can cause VIO to drift and become
unstable. Deep learning techniques have been used to solve
these problems by utilising neural networks’ ability to learn
strong feature representations and simulate intricate nonlinear
interactions, hence improving VIO performance. This project
showcases a deep learning-based VIO implementation. Using a
deep neural network design that leverages the complementing
information offered by various sensors, our method combines
optical and inertial measurements. In particular, we process
the visual measurements using a convolutional neural network
(CNN) and the inertial measures using an LSTM network. The
research shows how deep learning can be used to enhance VIO
performance.

II. DATA GENERATION

The data was generated by ourselves, [1], available on the
PeAR website. Preceding this, we tried other toolboxes based
on MATLAB and more, but none of them gave us the exact
data we needed, so we ended up using the referenced simulated
for our final data generation.

A. Environment

We placed a large image plane under the quadrotor, and
applied an image texture to it. The quadrotor had a camera
pointing towards this plane, and as the quadrotor moved
around it would take images at fixed intervals. The IMU data
was taken at a frequency of 1000 Hz and the images were
taken at a frequency of 100 Hz. This visual and intertial data
was then time-synced using time stamps.

We generated data for multiple trajectories, using this simu-
lation, however the data was exact/calculated, and we needed
simulated IMU data, so we used a MATLAB toolbox [2] to
add noise to the data to make it as realistic as possible.

B. Organizing The Data

Once the data from MATLAB was obtained, we converted
the required matrices, namely- state, gyroReading and accel-
Reading. All these values were compiled into a csv file with
13 columns:

[x, y, z, qx, qy, qz, ax, ay, az, gx, gy, gz] (1)

where first three values are translations in the respective
frames, followed by orientation in terms of quaternions, and
finally the IMU data as acceleration and gyroscope values.

C. Dataset

7 sequences were made of 2000 images and 20,000 IMU
readings each. The models were trained on six of these se-
quences, and tested on one trajectory. Figure 1 is an illustration
of the network. Each image was of size 320x240 pixels, and
the images were resized to 160x120 and grayscaled before
passing to the networks.

III. NEURAL NETWORKS

As the project required, we built three neural networks-
Vision, Inertial and a Combined one.

A. Pure Vision:

In order to use deep learning to estimate the camera pose
using purely vision, we created a neural network with just
two types of layers- convolutional and linear. To introduce
nonlinearity to the network, we also used ReLU activation.
Learning rate was set to 0.001 and the network was trained
for 21 epochs.

1) Loss: : We started off with using the MSE loss, but
soon realized that it was inappropriate for the use case. A
hybrid loss function with MSE and Geodesic component was
then implemented. (qi = [qx, qy, qz, qw])

Loss = MSE Loss For XYZ + Quaternion Distance

Dquaternion = cos−1(2 ∗ |q1.q2|) (2)

B. Inertial

For the inertial model, we decided to go ahead with LSTM
layers along with Fully Connected Layers, since LSTM are
better at processing time-series data than Convolutional layers.
The model was trained with learning rate of 0.0001, to avoid
NaN loss values. Figure 2 presents the architecture for this
model.

C. Combined

We combined both the models, the inertial and visual to
optimize the image and pose inputs. The architecture is shown
in the figure 3

IV. RESULTS

A. RMSE ATE error

The RMSE ATE error was calculated to be 4.4539312.

B. Predicted and Ground Truth Trajectory

A circular trajectory was plotted for ground truth and
estimated trajectory by the model in figure 4 and 5

C. Conclusion

The results were not satisfactory for us. The ground truth
and the predicted trajectories look similar in shape, however,
the values if the coordinates are heavily off.

Scope for improvement: Better network architecture and
loss functions. More experimentation with the architecture and
types of layers is needed.

V. RESEARCH PROBLEMS:

Feature Selection and Tracking Optimization: The goal
of feature selection and tracking optimisation is to minimise
feature drift and maximise tracking efficiency while exploring
new feature descriptors and tracking algorithms to improve
robustness against occlusions, changes in lighting, and
non-rigid scene deformations.

Scale Ambiguity and Drift Mitigation To reduce scale drift
and preserve long-term pose consistency,

Fig. 1: Pure Vision Model Architecture

Fig. 2: Inertial Model Architecture Fig. 3: Combined Model Architecture

Fig. 4: Ground Truth Circular Trajectory

Fig. 5: Predicted Circular Trajectory

REFERENCES

[1] “RBE595-F02-ST – Hands-On Autonomous Aerial Robotics —
rbe549.github.io,” https://rbe549.github.io/rbe595/fall2023/proj/p0/, [Ac-
cessed 28-04-2024].

[2] “IMU simulation model - MATLAB — mathworks.com,” https:
//www.mathworks.com/help/nav/ref/imusensor-system-object.html, [Ac-
cessed 28-04-2024].

Fig. 6: Pure Vision - Training loss across iterations

Fig. 7: Pure Vision - Training loss per epoch

Fig. 8: Pure Vision - Validation Loss

https://rbe549.github.io/rbe595/fall2023/proj/p0/
https://www.mathworks.com/help/nav/ref/imusensor-system-object.html
https://www.mathworks.com/help/nav/ref/imusensor-system-object.html

Fig. 9: Inertial - Training loss across iterations

Fig. 10: Inertial - Training loss per epoch

Fig. 11: Inertial - Validation Loss

Fig. 12: Combined - Training loss across iterations

Fig. 13: Combined - Training loss per epoch

Fig. 14: Combined - Validation Loss

	Introduction
	Data Generation
	Environment
	Organizing The Data
	Dataset

	Neural Networks
	Pure Vision:
	Loss

	Inertial
	Combined

	Results
	RMSE ATE error
	Predicted and Ground Truth Trajectory
	Conclusion

	Research problems:
	References

