
P4-Phase2
Deep and Un-Deep Visual Inertial Odometry

Smit M Shah
Email: smshah1@wpi.edu

Worcester Polytechnic Institute

Rigved Sanku
Email: rsanku@wpi.edu

Worcester Polytechnic Institute

I. PHASE-1 : TRADITIONAL APPROACH

A. Introduction

The main goal of this paper is to implement and
recreate the Stereo Multi-State Contraint Kalman
Filter(MSCKF). The following functions of the
MSCKF python implementation were changed
initialize gravity and bias, batch imu processing,
process model, predict new state, state augmentation,
add feature observations, measurement update and
predict new state.

B. Initialize Gravity and Bias

1) Gyroscope Initialization: The gyroscope measures the
rate of rotation around the IMU’s axes. However, even when
the IMU is stationary, the gyroscope might show some read-
ings due to bias. We average the angular velocity of initial 200
readings from the IMU while it is assumed to be stationary.
This average gives you an estimate of the gyroscope bias.

2) Accelerometer Bias and Gravity Initialization: The ac-
celerometer measures the acceleration in all three axes of
the IMU. When stationary, the only acceleration an IMU
should theoretically measure is the acceleration due to gravity
pointing downwards. By averaging the accelerometer read-
ings(initial 200) during a period when the IMU is static,
you can estimate the direction and magnitude of gravity.
This average should approximate the gravitational acceleration
vector, typically around 9.81 m/s² pointing toward the earth.

3) Calculating Initial Orientation: The IMU needs to know
its orientation relative to the world frame. Without this, you
can’t accurately translate the IMU’s readings into movements
in your SLAM map. With the estimated gravity vector from
the accelerometer and the known gravity vector in the world
frame, you can compute the initial orientation. This is done by
finding the rotation that aligns the +z vector (from the IMU
frame) to the measured gravity direction.

C. Batch IMU Processing

This function processes the buffered IMU data up to a
given time bound. The function is designed to propagate the
IMU’s state based on incoming IMU data up to a specified
time. It updates the system’s understanding of the IMU’s
current orientation, position, and velocity based on the angular
velocities and linear accelerations measured by the IMU.

D. Process Model

Method designed to update the IMU’s state based on the
current IMU readings (gyroscope and accelerometer), correct
these readings for biases, and propagate these updates through
the system using a mathematical model of IMU dynamics. The
mathematical model in continuous time is described equation
1.

I
Gq̇(t) =

1

2
Ω(ω(t))IGq(t),

ḃg(t) = nwg(t),
Gv̇I(t) =

G a(t),

ḃa(t) = nwa(t),
GṗI(t) =G vI(t)

(1)

Where I
Gq(t) is the unit quaternion for rotation from Global

frame G to IMU frame I.

Ω(ω) =

[
ω ω̂
ωT 0

]
(2)

Here ω̂ is a skew-symmetric matrix of the ω vector.
The gyroscope measurements wm are written as

ωm = ω + bg + ng (3)

The filter propagation equations are derived by discretiza-
tion of the continuous-time IMU system model. The time
evolution of IMU state dynamics is given by

I
G
˙̂q(t) =

1

2
Ω(ω̂I

G)q̂,

˙̂
bg = 03×1,

G ˙̂vI = C q̂
T â− 2⌊ωG×⌋Gv̂I + ⌊ωG×⌋2Gp̂I +G g,

˙̂
ba = 03×1,
G ˙̂pI =G v̂I

(4)

And the error dynamics of IMU error state are given by

˙̃XI = FX̃ +GnI (5)



Where F and G are

F =



⌊ω̂×⌋ −I3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

−C(IGq̂)
T ⌊â×⌋ 03×3 03×3 −C(IGq̂)

T 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 I3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3


(6)

G =


−I3 03×3 03×3 03×3

03×3 I3 03×3 03×3

03×3 03×3 −C(IGq̂)
T 03×3

03×3 I3 03×3 I3
03×3 I3 03×3 03×3

 (7)

E. Predict State

This function manages the transition and covariance ma-
trices. It begins by calculating the norm of the gyroscope
value and retrieving the current orientation, velocity, and
position from the IMU. Next, it propagates the state using
the 4th order Runge-Kutta method. The updated values for
orientation, velocity, and position for the subsequent state are
then computed, leading to an updated state for the IMU.

F. State Augmentation

The state augmentation function executes the state aug-
mentation process by incorporating a new camera state into
the state server, updating the covariance matrix, and main-
taining symmetry when new images are added. It computes
the rotation and translation from the IMU to the camera,
refreshes the camera state, and adjusts the covariance matrix
according to the new state. This step is essential for preserving
alignment between the IMU and camera states in the INS
implementation. The augmented J and J1 matrix are

J =
[
J1 O6×6N

]
(8)

J1 =

[
C(ICq) 03×9 03×3 I3 03×3

⌊C(IGq)
TIpC×⌋ 03×9 I3 03×3 I3

]
(9)

Pk|k =

[
I21+6N

J

]
PK|K

[
I21+6N

J

]T
(10)

G. Feature Observation

The add feature observations function incorporates feature
observations from a new image frame into the map server of a
visual-inertial odometry system. It generates new map features
for previously unobserved features, updates observations for
existing features, and determines the tracking rate.

H. Measurement Update

The measurement update function performs the update
based on measurements from visual features and inertial
sensors. To reduce computational complexity, the Jacobian
matrix H is initially decomposed using QR decomposition
when the number of rows in H exceeds the number of
columns. This results in a reduced-size matrix, Hthin, and

a transformed measurement vector, rthin. The Kalman gain,
which is crucial for weighing measurements during the update
step, is computed using Hthin, the state covariance P , and the
observation noise covariance.

The state error, denoted as δx, is determined by multiplying
the Kalman gain with rthin. δx is then divided into subvectors
for separate updates of the IMU and camera states. For the
IMU, small-angle quaternion operations are applied to update
the orientation, gyro bias, velocity, accelerometer bias, and
position. Additionally, the extrinsic rotation and translation
between the IMU and camera are updated.

For the camera states, updates to the orientation and position
are executed using small-angle quaternion operations based on
the sub-vector δxcam.

Finally, the state covariance is updated using the Kalman
gain and Hthin to compute the I −KH matrix, which is then
used to update the state covariance. Adjustments are made to
ensure that the updated state covariance remains symmetric.

I. Results

The absolute median trajectory error (ATE) is
0.08699091908516823 m and the root mean square translation
error (RMSE) is 0.09346765838541407 m. The outcomes
of our implementation are depicted in the following results.
Additionally, we have visualized the errors relative to the
ground truth using the MH 01 easy EuROC dataset. Refer
Fig 1 to Fig 9

8.06 16.12 24.18 32.25 40.31
Distance traveled [m]

0

5

10

15

20

25

T
ra

n
sl

a
ti

o
n
 e

rr
o
r 

[m
]

Estimate

Fig. 1. Relative Translation Error

0 10 20 30 40 50 60 70
Distance [m]

200
150
100

50
0

50
100
150
200

O
ri

e
n
t.

 e
rr

. 
[d

e
g
]

yaw

pitch

roll

Fig. 2. Rotation Error

II. DEEP LEARNING APPROACH

Abstract—In this module, various deep learning models and
techniques are employed to determine the odometry (translation
and rotation) of a drone simulated in Blender. Three distinct
methods are utilized: visual-only, inertial-only, and visual-inertial



8.06 16.12 24.18 32.25 40.31
Distance traveled [m]

0

20

40

60

80

100

120
Y
a
w

 e
rr

o
r 

[d
e
g
]

Estimate

Fig. 3. Relative Yaw Error

0 10 20 30 40 50 60 70
Distance [m]

200
150
100

50
0

50
100
150

P
o
si

ti
o
n
 D

ri
ft

 [
m

m
]

x

y

z

Fig. 4. Translation Error

3 2 1 0 1 2 3 4 5
x [m]

2

0

2

4

6

8

10

y
 [

m
]

Estimate

Groundtruth

Fig. 5. Ground truth vs Estimated Trajectory (Side View)

3 2 1 0 1 2 3 4 5
x [m]

1.5

1.0

0.5

0.0

0.5

1.0

1.5

z 
[m

]

Estimate

Groundtruth

Fig. 6. Ground Truth vs Estimated Trajectory (Top View)

odometry. Synthetic or simulated data, including downward-
facing images, position, orientation (represented by quaternions),
translational velocity, and rotational velocity, are used to train
several architectures. This approach facilitates the exploration
and validation of different computational models under con-
trolled conditions.

A. Data Collection

Simulation base of the drone is taken from Phase-2 assign-
ment 0 Alohomora! of Hands-On Autonomous Aerial Robotics
course [1]. The codebase and simulation is tweaked to fit the
aim of the paper. Images from the drones camera, its position,
translational velocity, orientation (quaternion) and Angular
Velocity is recorded and stored. To simulate an on-board IMU
model, MATALB’s IMU model [2] is used. For every 10 values
of IMU there is 1 Image. The drone in the simulation is made
to follow different trajectories (3D) above a textured plane.
Trajectories were created using parametric equations of certain
shapes like Circle, Helix, Flower, Hourglass and Frog.

B. Calculating Relative pose

Quaternion representations of the drone’s orientation at dis-
crete time intervals t and t+10 were converted into correspond-
ing rotation matrices. The relative rotational transformation
between these two matrices was computed, yielding a matrix
that characterizes the rotation from the initial to the final
orientation. Additionally, the positional displacements between
the two time points were determined. To contextualize these
displacements relative to the initial orientation, they were
transformed using the rotation matrix from time t.

Fig. 7. Initial Output Vision Only



Fig. 8. Initial Output Vision Only

Fig. 9. Initial Output Vision Only

C. Visual Only Odometry

3 Different models were trained and tested for Visual Only
Odometry. One is a basic Deep Neural Network that takes
two consequent images stacked horizontally, mimicing a stereo
camera input. It has 4 layers of Convluted Neural Networks
(CNN) with ReLU as activation function, Batch normalization
and Max Pooling. The Loss function used is Pose Loss. It
is a combination of cosine similarity loss and MSE loss.
The bias of the contribution of both the loss is controlled
through a variable α. This control helps as MSE is more
suited for attaining exact pose in terms of magnitude whereas
Cosine Loss is scale Invariant and hence focuses more on
the orientation of the drone. The second model employs a
ResNet architecture, inspired by UnDeepVO [3]. This model is
distinctively designed to output position and orientation sepa-
rately, acknowledging their fundamentally different behaviors.
This differentiation allows for independent tuning of the model
weights for position and orientation, enhancing the accuracy
and relevance of the output in practical applications. We have
changed the output of orientation to output Quaternions. The
third model utilizes a PWC-Net based matching network to
compute optical flow maps [4]. These maps are subsequently
inputted into a pose decoder network, from which the pose
is derived. This approach leverages the strengths of optical
flow for motion estimation to enhance the accuracy of pose
determination.

Fig. 10. UnDeepVO Architecture



Fig. 11. Helical Trajectory - VIO

Fig. 12. Frog shaped Trajectory - VO

D. Inertial Only

Two distinct models were developed and evaluated for
Inertial Only Odometry, both utilizing Bi-directional LSTM
architectures. The second model, however, integrates an atten-
tion mechanism with LSTM, enhancing its capability to focus
on relevant features dynamically during sequence processing.
This modification is aimed at improving the precision and
effectiveness of the odometry predictions by leveraging the
strengths of both LSTM and attention-based models. The Loss
function used in first module is Pose Loss.

E. Visual Inertial Ododmetry

Concatenation of Bi-directional LSTM with attention (In-
ertial) and RESNET (UnDeepVO). The architecture was then
connected with 2 Fully Connected Layers and a linear output
giving 3 position and 4 orientation (quaternion) values.

F. Loss Function Used

1) Pose Loss
2) Geodesic Loss
3) Normalized Loss
4) Cosine Similarity Loss

Fig. 13. Flower Trajectory - VO

G. Result

TABLE I
PERFORMANCE METRICS OF DIFFERENT MODELS

Model Train Val Test ATE Scale ATE Scale

DCNN -Pose Loss 0.144 0.5577 0.215 12.0051 0.3236 1.096
DCNN - Normalized Loss 0.4116 1.2976 0.574 37.4861 0.0106 0.0563
DCNN - Cosine) 0.266 1.059 0.410 28 ATE: 16.0 ATE scale: 16.16
RESNET -Pose Loss 0.08 0.553 0.1698 ATE: 9.5255 0.6857 2.262
RESNET -Normalized 6.26 5.88 6.157 ATE: 48.4786
RESNET - Cosine 0.346 1.339 0.5722
RESNET - Geodesic 0.293 0.971 0.415 85

REFERENCES

[1] “Project 0: Description,” https://rbe549.github.io/rbe595/fall2023/proj/
p0/, RBE 549/595, 2023, accessed on 2024-04-28.

[2] MathWorks, “imusensor system object - matlab,” https://www.mathworks.
com/help/nav/ref/imusensor-system-object.html, 2023, accessed: 2023-
04-28.

[3] R. Li, S. Wang, Z. Long, and D. Gu, “Undeepvo: Monocular visual
odometry through unsupervised deep learning,” 2018.

[4] W. Wang, Y. Hu, and S. Scherer, “Tartanvo: A generalizable learning-
based vo,” 2020.

https://rbe549.github.io/rbe595/fall2023/proj/p0/
https://rbe549.github.io/rbe595/fall2023/proj/p0/
https://www.mathworks.com/help/nav/ref/imusensor-system-object.html
https://www.mathworks.com/help/nav/ref/imusensor-system-object.html

	Phase-1 : Traditional Approach
	Introduction
	Initialize Gravity and Bias
	Gyroscope Initialization
	Accelerometer Bias and Gravity Initialization
	Calculating Initial Orientation

	Batch IMU Processing
	Process Model
	Predict State
	State Augmentation
	Feature Observation
	Measurement Update
	Results

	Deep Learning Approach
	Data Collection
	Calculating Relative pose
	Visual Only Odometry
	Inertial Only
	Visual Inertial Ododmetry
	Loss Function Used
	Result

	References

