
Deep-UnDeep Visual Inertial Odometry: Phase 2

Rutwik Kulkarni
Department of Robotics Engineering

Worcester Polytechnic Institute
Email: rkulkarni1@wpi.edu

Ankit Mittal
Department of Robotics Engineering

Worcester Polytechnic Institute
Email: amittal@wpi.edu

Abstract— This work presents a deep learning-based ap-
proach to compute visual, inertial and visual-inertial odometry
for a Micro Aerial Vehicle (MAV) using a custom and synthetic
dataset generated from simulation tools. We explore architec-
tures that combine convolutional neural networks (CNN) and
long short-term memory (LSTM) networks to learn spatial
and temporal features from the visual and inertial data.
Convolutional and LSTM networks are trained independently
on the visual and inertial data, and their outputs are fused to
estimate the MAV’s pose. The effectiveness of our approach is
evaluated on the custom dataset, demonstrating the potential of
deep learning techniques in enhancing visual inertial odometry
for MAVs under simulated conditions.

I. INTRODUCTION

Visual-Inertial Odometry (VIO) is crucial for autonomous
navigation in GPS-denied environments, particularly for Mi-
cro Aerial Vehicles (MAVs). VIO combines visual data
and inertial measurements to estimate device trajectories.
Traditionally, VIO relies heavily on precise feature detection
and tracking [1] [2], a process that can falter in dynamic or
complex settings. While recent deep learning advancements
like [3] and [4] have improved feature-based visual odometry,
integrating these techniques with inertial data remains a
challenge due to the abstract nature of inertial measurements.

This paper introduces a novel deep learning framework
for VIO tailored specifically for MAVs. Our framework
develops a unique architecture and loss function designed
to effectively fuse visual and inertial data. The approach
aims to predict the relative pose between two camera frames
by utilizing both image frames and interceding inertial mea-
surements. By adapting and innovating upon existing deep
learning methods, this research seeks to enhance the preci-
sion and reliability of VIO systems for MAVs, contributing
significantly to the advancement of autonomous navigation
technologies.

II. PROBLEM STATEMENT AND METHODOLOGY

Figure 1 illustrates the predictive outputs of our networks,
detailing how incremental positions and orientations are
derived. After acquiring these increments, we employ dead
reckoning to assess the trajectory tracking performance of
our system. This process provides a comprehensive evalua-
tion of how accurately the MAV follows its intended path
over time.

III. DATASET GENERATION

Generating a reliable dataset is important for training deep
learning models to estimate odometry from visual and inertial

Fig. 1: Problem Statement

data in Micro Aerial Vehicles (MAVs). Due to the limited
availability and complexity of existing datasets, we chose
to create our own synthetic dataset using Blender for better
control and clearer evaluation.

A. Simulation Environment Setup

We used Blender to simulate scenarios with an aerial robot
that has a down-facing camera and a 6-DoF IMU (3-axis
accelerometer and 3-axis gyroscope). The robot moves over
a flat surface, capturing RGB images and IMU data. The
environment is a large, flat area with textured images from
the internet, providing plenty of data for feature tracking.



This setup replicates the conditions an MAV might encounter
but does not include elements like motion blur, depth of
field, or changing lighting, to keep the simulation simple
and focused on basic dynamics.

B. IMU Data Generation

To generate realistic IMU data, we used Matlab’s IMU
Model. This third-party software simulates the output of an
IMU sensor, including noise and other realistic properties.
The simulator records angular rates and linear accelerations
at a frequency of 1000 Hz. These raw data points are then
processed to mimic how actual IMU sensors would capture
movements, ensuring that our model trains on data that
closely resembles real-world sensor output.

C. Camera Setup and Image Acquisition

We set the camera’s intrinsic matrix (K matrix) to a fixed
value to make the calibration process simpler, and we did not
simulate lens distortion. Images were captured at a rate of
100 Hz using a down-facing camera. This setup aligns the
visual data with the higher-frequency IMU data, although
at a slower rate, replicating the common differences in data
capture speeds between cameras and IMUs in real Micro
Aerial Vehicles (MAVs).

D. Motion Simulation and Data Extraction

We used a physics simulator from the ”Hands-On Aerial
Robotics” course to simulate drone movements. These move-
ments were based on the control equations used by the PX4
controller for quadrotors. We created the drone’s motion
profile using a custom-made random motion profile generator
and tested the model on two different flight paths: a square
and a spiral. We recorded the drone’s positions, velocities,
and orientations in the global frame (NED) and converted
these to the local sensor frame to get the incremental poses,
velocities, and accelerations needed for training our model.

E. Data Synchronization and Transformation

To align the visual and inertial datasets, we addressed the
differing data acquisition rates: the camera captures images
at 100 Hz, while the IMU collects data at 1000 Hz. We
downsampled the IMU readings to 100 Hz to synchronize
the datasets, ensuring accurate data correlation for reliable
odometry estimation in our VIO network. This synchroniza-
tion enhances the consistency of our training and validation
phases.

By creating and using a custom synthetic dataset, we make
sure that the model is trained in controlled, yet realistic
conditions. This allows for a detailed evaluation of its
performance in simulated MAV navigation tasks.

Fig. 2: Simulation Environment Setup

Fig. 3: Image at t Fig. 4: Image at t+1

Fig. 5: Training Trajectory for Train Dataset

Fig. 6: Noisy IMU Readings mimicking real IMU readings



F. Visual Odometry Network

1) Network Architecture: We designed our network based
on the paper [5] . Refer image no 7 in which it begins
with two sequential video frames marked as T and T+1,
capturing distinct moments. These frames are merged side
by side, resulting in a 6-channel image since each origi-
nal frame has three channels (assumed to be RGB). This
composite image is then sequentially fed through a convo-
lutional neural network (CNN), with each layer specifically
designed to gradually compress the spatial dimensions while
expanding the depth, indicated by the number of filters in
each layer—scaling down from an initial 640x480x3 to a
final feature map of 10x8x1024. The CNN’s output is then
processed by a Long Short-Term Memory (LSTM) network
comprised of two series of cells with 1000 units each,
showcasing its capability to capture the complex temporal
patterns between the frames. This integration of spatial and
temporal processing is central to the model’s function of
estimating the movement and orientation between the two
captured frames. Culminating the process, the model outputs
a 6x1 vector that represents the final relative pose, consisting
of Euler angles for orientation and a 3-dimensional vector for
position, detailing the motion from frame T to T+1.

Fig. 7: Deep VO Architecture

Sr. No. Hyperparameter Value
1 Epochs 50
2 Learning Rate 1e-4
3 Batch Size 8
4 Optimizer Adagrad
4 Sequence Length 5

TABLE I: Deep VO hyper-parameter

2) Training and Validation: For training and testing pur-
poses, we produced a total of 8 video sequences that fea-
tured various backgrounds and trajectories. Out of these, 2
sequences were set aside exclusively for testing. The network
was trained using sequences of 5 consecutive frames, with
a batch size of 8. We set the learning rate to 0.0001 and
employed the Adagrad optimizer for the training process.

Fig. 8: Training Loss for VO

Fig. 9: Validation Loss for VO

G. Inertial Odometry Network

1) Network Architecture: For IO based deep learning
network we utilized a simple LSTM-based network. The
LSTM’s ability to capture sequential dependencies makes
it well-suited for the odometry estimation problem, which
requires understanding the temporal motion model.

Fig. 10: Deep IO Architecture



Fig. 11: Training Loss for IO

Fig. 12: Validation Loss for IO

Sr. No. Hyperparameter Value
1 Epochs 50
2 Learning Rate 1e-4
3 Batch Size 8
4 Optimizer Adagrad

TABLE II: Deep IO hyper-parameter

2) Training and Validation: We generated data at 1000
Hz across 8 different video sequences, each comprising 8000
frames, to train the Deep IO network. As with the Deep VO,
2 of these sequences were held back for testing. For details
on the hyperparameters used during training, Refer Table II.

H. Visual-Inertial Odometry Network

1) Network Architecture: Regarding Deep VIO architec-
ture use utilized same architecture as Deep VO. But to
intregate the imu values in the network wr concated the IMU
data with the CNN output before feeding it into LSTM. We
utilized same CNN parameter for DEEP VIO as used in deep
vo. For detail refer 13

Fig. 13: Deep IO Architecture

2) Training and Validation: For training purposes, we
employed the same dataset as used for the Deep VIO and
Deep IO models. To synchronize the datasets, we matched
the camera’s frame rate of 100 Hz with the IMU’s 1000 Hz
by integrating the IMU data over the last 10 frames before
inputting it into the network.

Fig. 14: Training Loss for VIO

Fig. 15: Validation Loss for VIO

Sr. No. Hyperparameter Value
1 Epochs 10
2 Learning Rate 1e-4
3 Batch Size 8
4 Optimizer Adagrad

TABLE III: Hyperparameter Settings for Unsupervised Ho-
mography Net

I. Loss Function

The loss function employed in our model is a combination
of the Mean Square Error (MSE) for both positions, denoted
as p, and orientations, denoted as ϕ. It is defined as follows:

θ∗ = argmin
θ

1

N

N∑
i=1

t∑
k=1

(
∥p̂k − pk∥22 + κ∥ϕ̂k − ϕk∥22

)
(1)

Here, ∥ · ∥2 represents the Euclidean norm, κ is a scal-
ing factor, set to 100 in our experiments, to balance the
contributions of position and orientation errors in the loss
function, and N is the total number of samples in the dataset.
In our model, the orientation ϕ is represented using Euler
angles, providing a more interpretable framework as opposed
to quaternions.



IV. RESULTS

A. Trajectory Tracking Visual Odometry Network only

Fig. 16: Trajectory tracking for VO Network

The Absolute Trajectory Error (ATE) after dead-reckoning
from the Visual Odometry Network is given in the table.

TABLE IV: Absolute Trajectory Error Statistics

Parameter RMSE Std Dev
Rotation 6488.96 4.597

Translation 79.5 1.030

B. Trajectory Tracking Inertial Odometry Network only

Fig. 17: Spiral Trajectory tracking for IO Network

The Absolute Trajectory Error (ATE) after dead-reckoning
from the Inertial Odometry Network is given in the table.

TABLE V: Absolute Trajectory Error Statistics

Parameter RMSE Std Dev
Rotation 13889.96 6.597

Translation 102.06 2.030

C. Trajectory Tracking Visual-Inertial Odometry Network

Fig. 18: Trajectory tracking for VIO Network

The Absolute Trajectory Error (ATE) after dead-reckoning
from the Visual-Inertial Odometry Network is given in the
table.

TABLE VI: Absolute Trajectory Error Statistics

Parameter RMSE Std Dev
Rotation 6768.96 4.107

Translation 35.06 0.930

V. DISCUSSIONS

A. Insights into the problem with our approach

During training, we observed a decrease in both training
and validation losses(especially in VO), yet the results were
not accurate and contained significant errors initially. This
may be attributed to the position and orientation values
being very close to each other from one frame to the
next, with a precision of approximately 0.001. We suspect
that the model struggled to learn and predict values with
such high precision. Additionally, due to the use of LSTM,
which carries forward information from previous frames,
a few inaccurate predictions early in the sequence could
adversely affect future predictions. As a result, once the
network started producing incorrect outputs, the deviations
in predicted values began to accumulate, leading to further
errors in subsequent frames.

B. VO v/s IO v/s VIO

Our results indicate that each odometry method has its
strengths and weaknesses depending on the specific naviga-
tion context. Visual Odometry (VO) performs well in visually
rich environments but struggles in texture-less regions or
under rapid movements. Conversely, Inertial Odometry (IO)
offers consistent performance regardless of visual features
but is prone to drift over time. The combined Visual-Inertial
Odometry (VIO) approach leverages the strengths of both to
significantly reduce drift and improve trajectory estimation in
diverse environments. While our results might not be precise
in every scenario, careful observation of the trajectories re-
veals subtleties in the data that highlight inherent challenges



in visual-inertial navigation. These observations suggest that
the problem of integrating visual and inertial data effectively
under varying dynamic conditions remains complex, and our
method provides a framework that begins to address these
intricacies. Further refinement and testing are required to
enhance the robustness and accuracy of the system across
all types of environments.

C. Potential Research Avenues

1) Combining Traditional methods with Deep Learning
Methods: Combining Bayesian filters and deep learning
offers a promising approach to enhance visual-inertial odom-
etry. This fusion aims to leverage deep learning’s feature
extraction capabilities and Bayesian filters’ ability to handle
uncertainties. Challenges include efficient integration for
real-time processing while improving accuracy in dynamic
environments. This research could advance autonomous nav-
igation systems by providing more reliable odometry esti-
mates.

2) Using Event cameras: Exploring the integration of
event cameras in visual-inertial odometry offers a promising
avenue for improving system robustness and accuracy. Event
cameras provide high temporal resolution and low latency,
making them suitable for dynamic environments with rapid
motion and lighting changes. This research has significant
potential to enhance the performance of odometry systems
in real-world applications.

VI. ACKNOWLEDGMENT

We express our sincere gratitude to Prof. Nitin Sanket,
Teaching Assistant Yijia Wu, and Grader Aabha Tamhankar
for their constant support and technical guidance.

REFERENCES

[1] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint kalman
filter for vision-aided inertial navigation,” in Proceedings 2007 IEEE
International Conference on Robotics and Automation, 2007, pp. 3565–
3572. 1

[2] K. Sun, K. Mohta, B. Pfrommer, M. Watterson, S. Liu, Y. Mulgaonkar,
C. J. Taylor, and V. R. Kumar, “Robust stereo visual inertial
odometry for fast autonomous flight,” IEEE Robotics and Automation
Letters, vol. 3, pp. 965–972, 2017. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:3725704 1

[3] D. DeTone, T. Malisiewicz, and A. Rabinovich, “Superpoint: Self-
supervised interest point detection and description,” CoRR, vol.
abs/1712.07629, 2017. [Online]. Available: http://arxiv.org/abs/1712.
07629 1

[4] P. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich, “Superglue:
Learning feature matching with graph neural networks,” CoRR, vol.
abs/1911.11763, 2019. [Online]. Available: http://arxiv.org/abs/1911.
11763 1

[5] S. Wang, R. Clark, H. Wen, and N. Trigoni, “Deepvo: Towards
end-to-end visual odometry with deep recurrent convolutional neural
networks,” CoRR, vol. abs/1709.08429, 2017. [Online]. Available:
http://arxiv.org/abs/1709.08429 3

https://api.semanticscholar.org/CorpusID:3725704
https://api.semanticscholar.org/CorpusID:3725704
http://arxiv.org/abs/1712.07629
http://arxiv.org/abs/1712.07629
http://arxiv.org/abs/1911.11763
http://arxiv.org/abs/1911.11763
http://arxiv.org/abs/1709.08429

	Introduction
	Problem Statement and Methodology
	Dataset Generation
	Simulation Environment Setup
	IMU Data Generation
	Camera Setup and Image Acquisition
	Motion Simulation and Data Extraction
	Data Synchronization and Transformation
	Visual Odometry Network
	Network Architecture
	Training and Validation

	Inertial Odometry Network
	Network Architecture
	Training and Validation

	Visual-Inertial Odometry Network
	Network Architecture
	Training and Validation

	Loss Function

	Results
	Trajectory Tracking Visual Odometry Network only
	Trajectory Tracking Inertial Odometry Network only
	Trajectory Tracking Visual-Inertial Odometry Network

	Discussions
	Insights into the problem with our approach
	VO v/s IO v/s VIO
	Potential Research Avenues
	Combining Traditional methods with Deep Learning Methods
	Using Event cameras


	Acknowledgment
	References

