
RBE/CS 549 Project 4
Deep and Un-Deep Visual Inertial Odometry

Blake Bruell
Worcester Polytechnic Institute

babruell@wpi.edu

Cole Parks
Worcester Polytechnic Institute

cparks@wpi.edu

Abstract—In this project, we implement a visual-inertial odom-
etry system that fuses data from IMUs and cameras to estimate
the motion of a robot using. In Phase 1 we implement the stereo
Multi-State Constraint Kalman Filter (MSCKF) to estimate the
state of the robot, using stereo cameras, evaluated on the EuRoC
dataset.

I. PHASE 1

A. Initializing Gravity and Bias

A six-degree-of-freedom IMU, used to measure rotation and
acceleration using a gyroscope and accelerometer, necessitates
calibration to correct bias in the sensors. This is done by calcu-
lating the mean of a set of stationary readings to determine the
bias, since the only force acting on the accelerometer is gravity
and there should be no torques acting on the gyroscope. The
gyro bias is then subtracted from all subsequent gyroscope
readings, and the gravity is initialized as [0,0, -gravity norm].
This estimation of gravity is not perfect, so the gravity vector
is updated during the filter process.

B. Batch IMU Processing

Since the features and the IMU data do not come in at the
same rate, we want to batch IMU messages. In practice, when
feature is received, all IMU messages in the IMU message
buffer which have a timestamp prior to the feature’s timestamp
are processed using the IMU process model. This is ensures
that the IMU state is updated to the time of the feature
observation.

C. Process Model

Batch processing is responsible for processing IMU mes-
sages and updating the IMU state within a specified time
frame. It iterates through the IMU messages, discarding those
already processed and stopping at the time bound. For each
unprocessed message, it applies the process model to up-
date the IMU state based on angular velocity and linear
acceleration measurements. The function updates the IMU
state’s timestamp and ID, and removes processed messages
from the buffer. This function is crucial for accurate state
propagation and synchronization between the IMU and Visual
Odometry components, contributing to reliable sensor fusion
and localization.

Mathematically, the process model can be described as
follows [1]:

I

G
˙̂q =

1

2
Ω(ω̂(t)) I

Gq̂,

G ˙̂v = C(I
Gq̂)

⊤â+ Gg,

˙̂
bg = 03×1,

˙̂
ba = 03×1,

G ˙̂pI = Gv̂,
I

C
˙̂q = 03×1,

I ˙̂pC = 03×1,

(1)

where
I

G
˙̂q(t) is the unit quaternion which described the

rotation from the global from (G) to the IMU frame (I),
ω̂ ∈ R3 and â ∈ R3 are the IMU measurements of angular
velocity and acceleration respectively with the biases removed.

Ω(ω̂) =

[
−⌊ω̂×⌋ ω
−ωT 0

]
where ⌊ω̂×⌋ is the skew symmetric matrix of ω̂.

Based on Equation 1, we get the following linearized
continuous dynamics for the error IMU state:

˙̂xI = Fx̂I +Gn⊤
I (2)

where n⊤
I =

(
n⊤
g n⊤

wg n⊤
a n⊤

wa

)
is the noise vector and

F and G are the state transition matrix and the noise matrix
respectively.
F is given by:

F =

−⌊ω̂×⌋ −I3 03 03 03

03 03 03 03 03

−C(I
Gq̂)

⊤⌊â× 03 03 −C(I
Gq̂)

⊤ 03

03 03 03 03 03

03 03 I3 03 03

03 03 03 03 03

03 03 03 03 03

(3)

and G is given by:

G =

−I3 03 03 03

03 I3 03 03

03 03 −C(I
Gq̂)

⊤ 03

03 03 03 03

03 03 03 I3
03 03 03 03

03 03 03 03

(4)

D. Predict New State

When new images and IMU readings are received, we pre-
dict the new state using an Extended Kalman Filter, which uti-
lizes a 4th order Runge-Kutta integration to update the IMU’s
state based on new accelerometer and gyroscope data. This
function calculates the norm of the gyroscope measurements
and sets up the Omega matrix to update the IMU’s orientation
quaternion. Depending on the gyroscope norm, it adjusts the
quaternion calculation for numerical stability. The method
computes intermediate values for velocity and position using
the Runge-Kutta method, applying transformations based on
the IMU’s current state and corrected acceleration. The final
updated state, including orientation, velocity, and position, is
then recalculated and stored back into the state server, readying
the system for subsequent updates.

E. State Augmentation

State Augmentation adds a new camera pose and updates
the covariance matrix when a new image is received

In visual-inertial odometry systems, the state augmentation
function is crucial for integrating the most recent camera state
updates based on the latest IMU data. The function specifically
adjusts the camera’s position (GpC) and orientation (CGq)
using the previous IMU state information. The pose of the
camera is computed using the following equations [2]:

GpC = GpI + C(CGq)
T IpC

CGq = CIq ⊗ IGq

Where GpC represents the global position of the camera,
GpI is the global position of the IMU, C(CGq)

T is the
rotation matrix derived from the quaternion describing the
camera’s orientation relative to the global frame, and IpC is
the relative position vector from the IMU to the camera. The
quaternion operation ⊗ signifies quaternion multiplication,
which is used to combine the orientation of the IMU (IGq)
and the relative orientation from the IMU to the camera (CIq).

Following the calculation of the new camera pose, the state
covariance matrix P is augmented to reflect the updated state
uncertainty. This is achieved through a Jacobian matrix J ,
which maps the influence of the new camera state onto the
overall system uncertainty:

J =

[
C(ICq) 03×9 03×3 I3 03×3⌊

C(IGq)
T IpC×

⌋
03×9 I3 03×3 I3

]
The updated state covariance matrix Pk|k is computed as:

Pk|k = JPK|KJT

This matrix J effectively accounts for the effects of camera
motion relative to the IMU, ensuring that updates in camera
position and orientation are accurately reflected in the state
covariance.

F. Adding Feature Observation

After a feature is detected, it is added to the feature map
server, which is done by getting the current IMU state ID and
number of features in the map server, and iterating over all of
the new features, creating new features for unseen features and
updating existing features. After, the tracking rate is updated.

G. Measurement Update

For the measurement update, we first decompose the Jaco-
bian to reduce its computational complexity using QR decom-
position. We then calculate the residual between the predicted
and observed feature positions, and compute the Kalman gain
and update the state and covariance. The residual is calculated
by subtracting the predicted feature position from the observed
feature position. The state is then updated by adding the
Kalman gain multiplied by the residual, and the covariance
is updated by subtracting the Kalman gain multiplied by the
observation model from the identity matrix. Also, the IMU
state, extrinsics, and camera states are updated by applying
small angle quaternion operations.

H. Results and Discussion

The graphs and images are the results of running our VIO
on the MH 01 easy EuRoC dataset are shown in Appendix
A. The trajectory and relative errors throughout the run are
shown.

Fig. 1: Setup of the dataset generation, camera shown in
orange.

II. PHASE 2

In the second phase of this project, we aim to imple-
ment a visual inertial odometry pipeline using deep learning
techniques. To accomplish this phase, we broke the goal
down into four steps: data generation, inertial model, visual
model, and then generation and analysis of final pipeline. We
will discuss each of these steps in detail in the following
sections. To ensure that time was used efficiently, multiple
steps were performed in parallel, meaning that certain steps
which depended on the completion of others were started
before the completion of the previous step. This allowed us to
make the most of the time available, but meant that some steps
contained work which did not make it to the final version of
the project.

A. Data Generation

The first challenge of this phase was to generate a good
dataset for training and testing our VIO model. The dataset we
decided to create was modeled after the EuRoC dataset [3]. As
such, three artifacts were created for each sequence: a ground
truth file containing time-stamped positions and orientations,
an IMU file which contained timestamped 6-DoF IMU data,
and finally a directory containing timestamped images in the
sequence.

Setup: The basic setup of the data generation was as
follows: A camera was positioned above an image which was
placed on the ground plane of a 3d scene, as shown in Figure 1.
The camera was then moved around and oriented in the scene
based on the ground truth position and orientation information,
and frames were rendered. We chose an IMU rate of 100Hz,
and a camera rate of 10Hz, so each frame was associated with
10 IMU samples.

(a) Intersection 1

(b) Intersection 2

Fig. 2: Images used for the dataset

Choice of Images: Our team wanted to use images which
would result in realistic and challenging visual odometry
problems. As such, we decided to use aerial photographs of
traffic intersections. These images were chosen because they
contained a lot of texture and detail, and because they could be
found in high resolution. The two images used in the dataset
are shown in Figure 2.

Paths: Initially when attempting to create paths for our
camera to follow, our team looked at the Blackbird dataset
[4], but unfortunately the dataset was no longer available to
download. As such, we generated our own paths inspired by
the Blackbird dataset. To do this, we came up with parametric
equations for the position of the camera in the scene, and then
used the equation to generate a path. The equations we used
were as follows:

1) A out and back line of length 15m along the x-axis at
a fixed height h above the ground plane.

x(t) = t

y(t) = 0

z(t) = h

2) A circle of radius 5m at fixed height h above the ground

plane.

x(t) = 5 cos(t)

y(t) = 5 sin(t)

z(t) = h

3) A circle of radius 5m which moves up and down twice
during the path.

x(t) = 5 cos(t)

y(t) = 5 sin(t)

z(t) = 10 + 2 sin(2t)

4) A stretched Lissajous curve with a = 1, b = 3 at fixed
height of 10m above the ground plane.

x(t) = 2 cos(3t)

y(t) = 4 sin(t)

z(t) = 10

5) A complex 3 dimensional curve

x(t) = 3 cos(3t) + 2 cos(2.3t) + 0.9 cos(6t)

y(t) = 3 sin(3t) + 2 sin(2.3t) + 1.34 cos(6t)

z(t) = 11− 3 sin(t/2)

The paths were sampled non linear with a slow start and
end, as to not have the camera move too quickly at the start and
end of the path. This was done my passing the time variable
t through the following function:

f(t) =
32 sin(t)3

279
− 64 sin(t)

93
− 14 sin(2t)

93
− sin(4t)

372
+ t

Each of these paths can be seen visualized in Appendix B.
Rendering: The step of rendering the view was accom-

plished using blender. Notably, to improve render times, the
image texture was placed onto a plane as a purely emissive
texture, which allowed the rendering to occur at around 20
frames per second. The camera was then moved along the path,
and frames were rendered at each time step. This process was
automated using a python script which interfaced with blender
through the bpy library.

IMU Data: The IMU data was generated by simulating
a 6-DoF IMU in the scene. The IMU was located exactly
coincident with the camera, with the camera facing in the
−z direction with +y up. After generating raw IMU read-
ings using basic discrete differentiation of the position and
orientation data, the readings were passed through a model
of the IMU noise. The noise model was a simplified version
of the GNSS-INS-SIM codebase, as given in the code for the
OysterSim project [5]. The noise model was a simple random
walk model with a bias term, and was used to generate the
final IMU data.

Fig. 3: Inertial Odometry Model

B. IO

The next step in the project was to implement a inertial
odometry pipeline. This pipeline would take in IMU data and
output a trajectory estimate. The pipeline was implemented
using a LSTM network, with an input of 6-DoF IMU data,
hidden state of size 128, and an output of a 7 vector represent-
ing the position and orientation of the camera. The network
was trained on the generated dataset.

The key insight for this portion of the model is that the task
of predicting a path from IMU data is inherently temporal, as
at the most basic level one needs to integrate the acceleration
and angular velocity data to get the position and orientation.
As such, a LSTM network was chosen as the model for this
task. The network was implemented using the PyTorch library,
and was trained using the Adam optimizer with a learning
rate of 0.001. Unfortunately, this network was unable to learn
anything, and thus the results are not included in this report.
The loss used for the IMU was the MSE loss between the
ground truth change in position, and the predicted change in
position. This was added to the cosine similarity loss between
the ground truth and predicted orientation. The loss was then
summed and used to train the model.

C. VO

The final step in the project was to implement a visual
odometry pipeline. This pipeline would take in a pair of
images and output a relative pose estimate. The pipeline was
implemented using a CNN network, with an input of two
images and an output of a relative pose. The network was
trained on the generated dataset.

Figure 4 shows the architecture of the visual odometry
model. The model was implemented using the PyTorch library,
and was trained using the Adam optimizer with a learning rate

Fig. 4: Visual Odometry Model

of 0.001. The model was trained for 20 epochs, and the results
are shown in the next section. The same loss function was used
for the visual odometry model as was used for the inertial
odometry model. The loss was the MSE loss between the
ground truth change in position, and the predicted change in
position. This was added to the cosine similarity loss between
the ground truth and predicted orientation. The loss was then
summed and used to train the model.

D. Results

The previously described techniques did not perform all that
well, and overfitted to the data, or didn’t learn any generalized
knowledge. The loss over time for the VO model is shown
in Figure 7. The loss for the IO model was similar, and is
not shown here. The results of the VO model were not very
good, and the model was unable to generalize to new data.

Fig. 5: Degenerate results of the VO model, just predicting
zeros

The results of the IO model were even worse, and the model
was unable to learn anything at all.

E. Future Research

The application of deep learning to the task of VIO is a
well explored field, with techniques such as LSTM networks,
temporal CNNs, and many others having been applied to the
task. One architecture which we did not see well explored were
transformers. Transformers are great at taking in sequences of
data and outputting sequences of data, and as such could be
a good fit for the task of VIO. Additionally, the use of a
transformer would allow for the model to take in the entire
sequence of data at once, rather than having to be fed the
data in a sequential manner. This could allow for the model
to learn more complex temporal relationships in the data, and
could potentially lead to better results. Finally, transformers
have been well explored for images, and so the use of a
transformer for the visual portion of the model could be a
good fit. For the inertial portion of the model, a transformer
could be used to take in the entire sequence of IMU data and
output the trajectory. This would allow for the model to learn
more complex temporal relationships in the data, and could
potentially lead to better results.

REFERENCES

[1] A. I. Mourikis and S. I. Roumeliotis, “A multi-state con-
straint kalman filter for vision-aided inertial navigation,”
in Proceedings 2007 IEEE International Conference on
Robotics and Automation, 2007, pp. 3565–3572. DOI:
10.1109/ROBOT.2007.364024.

[2] K. Sun, K. Mohta, B. Pfrommer, et al., “Robust stereo
visual inertial odometry for fast autonomous flight,”
CoRR, vol. abs/1712.00036, 2017. arXiv: 1712 .00036.
[Online]. Available: http://arxiv.org/abs/1712.00036.

Fig. 6: Overfitted results of the VO model, just memorizing
the data

Fig. 7: Loss over epochs for the VO model

[3] M. Burri, J. Nikolic, P. Gohl, et al., “The euroc mi-
cro aerial vehicle datasets,” The International Jour-
nal of Robotics Research, 2016. DOI: 10 . 1177 /
0278364915620033. eprint: http : / / ijr . sagepub . com /
content/early/2016/01/21/0278364915620033.full.pdf+
html. [Online]. Available: http://ijr.sagepub.com/content/
early/2016/01/21/0278364915620033.abstract.

[4] A. Antonini, W. Guerra, V. Murali, T. Sayre-McCord, and
S. Karaman, The blackbird dataset: A large-scale dataset
for uav perception in aggressive flight, 2018. arXiv: 1810.
01987 [cs.CV].

[5] X. Lin, N. Jha, M. Joshi, N. Karapetyan, Y. Aloi-
monos, and M. Yu, “Oystersim: Underwater simulation
for enhancing oyster reef monitoring,” in OCEANS 2022,
Hampton Roads, IEEE, Oct. 2022. DOI: 10 . 1109 /
oceans47191 . 2022 . 9977233. [Online]. Available: http :
//dx.doi.org/10.1109/OCEANS47191.2022.9977233.

APPENDIX A
CLASSICAL VIO RESULTS

7.3 14.61 21.92 29.23 36.53

Distance traveled [m]

0

50

100

150

T
ra

n
sl

a
ti

on
er

ro
r

[%
]

Estimate

Fig. 8: Relative Translation Error Percentage

7.3 14.61 21.92 29.23 36.53

Distance traveled [m]

0

5

10

15

20

T
ra

n
sl

at
io

n
er

ro
r

[m
]

Estimate

Fig. 9: Relative Translation Error

7.3 14.61 21.92 29.23 36.53

Distance traveled [m]

0

50

100

150

Y
aw

er
ro

r
[d

eg
]

Estimate

Fig. 10: Relative Yaw Error

0 10 20 30 40 50 60 70

Distance [m]

−100

0

100

O
ri

en
t.

er
r.

[d
eg

]

yaw

pitch

roll

Fig. 11: Rotation Error

0 10 20 30 40 50 60 70

Distance [m]

0

1

2

3

4

5

S
ca

le
D

ri
ft

[%
]

scale

Fig. 12: Scale Error

−2 0 2 4

x [m]

−1

0

1

z
[m

]

Estimate

Groundtruth

Fig. 13: Trajectory Side

−2 0 2 4

x [m]

−2

0

2

4

6

8

y
[m

]

Estimate

Groundtruth

Fig. 14: Trajectory Top

0 10 20 30 40 50 60 70

Distance [m]

−100

0

100

200

P
os

it
io

n
D

ri
ft

[m
m

]

x

y

z

Fig. 15: Translation Trror

APPENDIX B
DATASET PATHS

Fig. 16: Lissajous 3:1

Fig. 17: Complex Path

Fig. 18: Circle 5m

Fig. 19: Circle 10m

Fig. 20: Circle 15m

Fig. 21: Circle 10m Up Down

Fig. 22: Out and Back

