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Abstract — This report presents an end-to-end trainable
framework for Visual Inertial Odometry (VIO) using deep
learning to address the limitations of traditional VIO
systems. Leveraging a custom Blender-generated dataset
that simulates real-world scenarios, our model integrates
deep Recurrent Convolutional Neural Networks (RCNNs)
for monocular visual odometry and a Long Short-Term
Memory (LSTM) network for processing inertial mea-
surements. The visual network directly infers poses from
sequences of raw RGB images, bypassing the conventional
feature extraction and matching processes, while the in-
ertial pathway enhances pose estimation with adaptive
IMU data integration. We levergae existing models for
transfer learning and optimize the state-of-the-art meth-
ods. Our experiments demonstrate that this approach
shows better adaptability to various motion dynamics. The
implementation details and the comprehensive evaluation
on the Blender dataset highlight our method’s potential
in improving both the efficiency and robustness of VIO
systems.

I. INTRODUCTION

This research addresses the challenge of enhancing the
accuracy and robustness of Visual Inertial Odometry (VIO)
by integrating deep learning techniques. Traditional methods,
reliant on feature detection and tracking, often falter in dy-
namic environments. Our study aims to:

1) Develop an end-to-end deep learning architectures that
leverages both visual and inertial data for real-time pose
estimation, reducing dependency on conventional feature
extraction.

2) Utilize a synthetic dataset created in Blender, simulating
realistic navigation scenarios with a down-facing camera
and a 6-DoF IMU on an aerial robot, to train and validate
our models.

3) Implement and assess three distinct models using:
a) Only vision data from sequences of RGB frames.
b) Only IMU data capturing 6-DoF measurements.
c) Both vision and IMU data.

4) Evaluate the models on unseen test sequences, compar-
ing their performance against ground truth trajectories
derived from incremental poses.

This streamlined approach focuses on comparing the effec-
tiveness of each data modality in isolation and in combination,

aiming to advance VIO systems’ capabilities in challenging
environments.

II. RELATED WORK

Recent advancements in visual odometry (VO) leverage
deep learning to enhance accuracy and computational effi-
ciency. A novel end-to-end framework using deep Recur-
rent Convolutional Neural Networks (RCNNs) is presented
in [1], which directly infers poses from raw RGB images,
demonstrating competitive performance on the KITTI dataset.
Similarly, [2] introduces DeepVIO, a self-supervised network
that combines optical flow and IMU data, achieving notable
improvements in trajectory estimation under challenging con-
ditions. Additionally,[3] proposed an adaptive method that
reduces computational redundancy by selectively disabling
the visual modality, maintaining robust performance with
significant complexity reduction.

We leverage networks for transfer learning and optimize
them based on our motion dynamics on our custom dataset.
Transfer learning from state-of-art-methods is meticulously
achieved in this report.

III. METHODOLOGY

A. Architecture Details

Our architecture can be thought of as a modification of the
network proposed in [3]. We remove the policy network as it
was mostly proposed to improve the runtime considerations of
the VIO network. We also take components of their network
to create three separate networks to allow for odometry
calculation given (1) only IMU data, (2) only camera data,
and (3) both.

1) Intertial Only (IONet): The architecture for pose es-
timation combines fully connected linear layers (FC), CNN
(one-dimensional) and RNN (LSTM) layers to process se-
quential data effectively. In our case, we set the IMU op-
erating frequency to 100Hz. This input takes in the IMU
measurements for the last 1.0 second (100 measurements).
The IMU provides 6 DoF measurements (3 DoF for linear
acceleration and another 3 DoF for angular velocity). Each of
these 6 measurements are bundled into subsequences of size
10. Each of these subsequences go through the CNN layers
followed by a fully connected layer that generates a feature
vector encompassing the relative transformation information
(translation and rotation). This CNN + FC portion of the
IONet is the inertial encoder portion of the network (See



Figure 1). This encoder generates feature vectors for each
given subsequence. These feature vectors are then sequentially
passed through the LSTM layer. In total, 10 sequences are
passed through the LSTM layer. The final hidden state of
the LSTM layer then passed through another FC layer that
generates transformation data as a tuple of linear and angular
(euler) displacement. Hence, a single input to IONet is the last
100 IMU measurements. The expected output of the network
is the relative transformation between the pose of the most
recent measurement and the pose of IMU after a subsequence
number of measurements (10 measuements, or 0.1 seconds).
Therefore, this model is expected to take in the last 1 second
of IMU measurements, and predict the relative transformation
of the IMU in the next 0.1 seconds.

The network inputs feature vectors and uses an LSTM
configuration with 1024 hidden units across two layers, incor-
porating a dropout rate of 0.2 to prevent overfitting. Outputs
are refined through a series of linear transformations and
LeakyReLU activations to produce the final pose estimates.
Complementing this, a series of 1D convolutional layers
process inertial data by expanding input channels progressively
from 6 to 256, stabilized with batch normalization and dropout.
These features are then used for pose prediction through the
recurrent network.

IONet is trained from scratch using the simulated IMU
readings. After training is complete, the encoder portion of
the network is reused in VIONet.

Fig. 1. IONet Architecture

2) Visual Only: VONet: Similar to IONet, the architecture
of VONet for pose estimation combines fully connected linear
layers, CNN (two-dimensional) and RNN (LSTM) layers.
We set the camera operating frequency to 10Hz. We use 10
sequences of pair subsequent of images. Hence, this network
also takes in the last 1 second’s measurements and outputs the
predicted relative transformation in the next 0.1 seconds. This
modification is done by changing the visual encoder portion
of the network (See Figure 2).

CNN portion of the network is initialized with the weights
of FlowNet. The rest of the network is trained from scratch.
LeakyReLU activation functions are employed to introduce
non-linearity, helping the network learn more complex pat-
terns. Batch normalization is applied at each layer to stabilize
learning and accelerate the convergence of the network. These
components, combined with dropout of 0.2, ensure robust

performance by preventing overfitting, enhancing the model’s
ability to generalize across diverse scenarios.

VONet’s encoder portion consists of CNN layers that are
initialized to the FlowNet weights, fully connected layers that
are trained from scratch. VONet is trained on the Blender
generated data. After training is complete, the encoder portion
of the network is reused in VIONet.

Fig. 2. VONet Architecture

3) Visual and Inertial Network: VIONet: To reduce training
time and re-usability, we use the inertial encoder portion of
the network from IONet (See Figure 1), and the visual encoder
portion of the network from VONet (See Figure 2). Feature
vectors generated from these encoders are concatenated before
passing through the LSTM + FC layers. In this network, the
encoders are frozen, i.e., their parameters aren’t updated by the
training loop. Only the LSTM + FC layers are trained from
scratch (See Figure 3).

Fig. 3. VIONet Architecture

B. Loss Function

The model outputs the transformation prediction as a linear
and angular (euler) displacement for each next 0.1s (sub-
sequence) of the input. The ground truth is calculated by



summing the displacement through the ground truth poses for
the IMU measurements over increments of 10 measurements
(subsequences).

Initially, we experimented with cosine embedding loss for
a custom CNN-based network for inertial and visual data.
However, the lack of time-series tracking pushed us towards
changing the architecture. After the change, we simply used
the RMSE loss. It worked fine for simple cases as can be seen
in Figures IV-B2 and IV-B2.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (1)

Inputs being model’s predicted pose difference and data
ground truth pose difference between the next subsequence
time. The total loss needs to be minimized for good trajectory
tracking.

IV. EXPERIMENTAL SETUP

A. Dataset

We initially used [8] to generate relative linear acceleration,
angular acceleration, position and roll, pitch and yaw. How-
ever, there were issues like mapping timestamps to blender
to sample images, unclear trajectory generation commands,
etc. We switched to [9] which overcomes these issues. This
generates the global poses in NED(North East Down) frame
of reference. We defined waypoints using parametric equations
for several curves. This gives us positions, velocities, quater-
nions and angular velocitites. We modified it to get relative
poses and acceleration data as csv files. We generated 15 dif-
ferent trajectories of varying complexity and maneuverability
as shown in Figures IV-A and 5.

Fig. 4. Screenshot the Blender setup. Texture generated from DALL.E3[7]

B. Experiments

We use the Adam optimizer with a learning rate of 0.00001
for all the networks presented. We use a batch size of 16. We
trained the models until we stopped them after we observed
convergence of the test loss.

Fig. 5. Trajectory paths included in this dataset (Top Down)

1) Sequence Length (Look-back Time Horizon): We defined
a parametric window for different time horizons that varies our
data feed to our network. We experimented with 1s, 10s and
50s corresponding time data at once to IONet and assessed it’s
performance. The IONet performed well on 1s time horizon.
Performance degraded as we increased the time horizon. This
was in opposition to our expectations, as we thought that the
LSTM layer would prefer more data. For VONet and VIONet,
we weren’t able to test time horizons more than 1 second
due to memory constraints. The 1 second lookback period for
VONet already was using 16/24GB of the available memory
on the GPU.

2) Trajectory Tracking Performance Measurement : To
evaluate the trajectory following performance of our networks,



we used the evaluation tool developed by Zhang et al. [10]. Of
the 16 trajectories, where 13 was in the training set, and 3 in
the testing set, the trajectories in the training set performed
better. This implies that the network is overfitted into the
training dataset. This can also be seen in the loss over epochs
in Figures 6, 7, 8, 9, 10, 11.

Fig. 6. IONet Training Loss vs Epochs

Fig. 7. IONet Testing Loss vs Epochs

V. DISCUSSION AND CONCLUSION

In this work, we presented a custom generated dataset
and network architectures for odometry tracking given inertial
and/or visual data. The provided graphs show that the model is
able to perform this task up to a capacity. Given the time con-
straints and limited data, the trajectory tracking performance
isn’t great, but at least visible.

One possible research area for improving upon the classical
VIO methods would be to combine RGB and event cameras to-
gether to obtain jello-free frames, thereby improving tracking
of features across frames in fast moving bases. Replacing the
encoder architecture with the encoder of a transformer could

Fig. 8. VONet Training Loss vs Epochs

Fig. 9. VONet Testing Loss vs Epochs

yield better results. Training LSTMs are time consuming be-
cause it is essentially a sequential operation. So, the last LSTM
layers can also be replaced by a transformer architecture.
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Fig. 12. Figure Eight position estimate vs. ground truth in top view for IONet, VONet, VIONet
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Fig. 13. Rotational tracking error (in degrees) over distance travelled (in meters) for Figure Eight
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Fig. 14. Position tracking error (in percentage) over distance travelled (in meters) for Figure Eight
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Fig. 15. Scale drift error (in percentage) over distance travelled (in meters)
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Fig. 16. Yaw tracking error (in degrees) over distance travelled (in meters)
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Fig. 17. Position tracking error (in meters) over distance travelled (in meters)
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Fig. 18. Sine Wave Trajectory comparison for IONet, VONet, VIONet

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Distance [m]

−50

0

50

O
ri

en
t.

er
r.

[d
eg

]

yaw

pitch

roll

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Distance [m]

−100

−50

0

50

100

O
ri

en
t.

er
r.

[d
eg

]

yaw

pitch

roll

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Distance [m]

−60

−40

−20

0

O
ri

en
t.

er
r.

[d
eg

]

yaw

pitch

roll

Fig. 19. Rotational tracking error (in degrees) over distance travelled (in meters) for Figure sine
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Fig. 20. Position tracking error (in percentage) over distance travelled (in meters) for Figure sine
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Fig. 21. Scale drift error (in percentage) over distance travelled (in meters)
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Fig. 22. Yaw tracking error (in degrees) over distance travelled (in meters)
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Fig. 23. Position tracking error (in meters) over distance travelled (in meters)
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