
1

RBE/CS-549: Project 4 - Deep VIO
Dhrumil Sandeep Kotadia, Dhiraj Kumar Rouniyar, Krunal M. Bhatt

Abstract—During this phase, we investigated the application
of deep learning techniques to address Visual Inertial Odom-
etry (VIO). Initially, we generated the dataset using Blender.
Subsequently, we employed this processed data to train separate
networks for visual-only odometry and inertial-only odometry.
Additionally, we proposed a network architecture designed to
integrate both visual and inertial signals for odometry estimation.
However, due to time constraints and unresolved issues within
our visual-only and inertial-only networks, we were unable to
train the VIO network as planned. Furthermore, we assessed the
accuracy of our odometry predictions against ground truth data
using the rpg trajectory evaluation toolbox, following a similar
methodology as in Phase 1.

I. INTRODUCTION

Traditional VIO implemented previously, depends largely
on feature detection and tracking. It becomes difficult to
identify similar set of features for inertial data. Pose tracking
based on camera images has been shown to be sensitive to
motion blur, occlusions, and lighting changes. Thus, a lot
of work has been conducted over the last years on visual-
inertial pose tracking using acceleration and angular velocity
measurements from inertial sensor such as IMU, in order to
improve the visual tracking.

A long short-term memory model (LSTM) model is used
to provide an estimate of the current pose based on previous
poses and inertial measurement, combined with output of
visual tracking using Linear Kalman Filter gives a robust
estimate [1]. Another approach extracts the image features
using CNN and projects them to a visual manifold. Temporal
features are extracted from IMU data on the platform using
BiLSTM network [2]. This HVIO approach can be imple-
mented to estimate a UAS position in real time.

Furthermore, replacing the feature matching with Super-
Point or SuperGlue models would work, but a similar set of
features are hard to conceptualize for inertial data [3], [4].
Inertial navigation has some great work but a very few of
them work with VI-fusion.

II. DATASET GENERATION

For this approach we have generated our own dataset using
Blender. We use a down-facing camera and an 6-DOF IMU
on an aerial robot looking at a planar surface. Data for such
scenes is not readily available. Hence, we estimate the relative
pose using the data generated from blender with such a setup.
We also assume that the biases from the neural network are
zero. The roll and pitch angles of the camera do not exceed
45°. Here, while generating the dataset, we ignore the realistic
effects such as motion blur, depth of field or lighting changes.

The authors are with the Robotics Engineering Department of Worcester
Polytechnic Institute, Worcester, MA 01609 USA(email: dkotadia@wpi.edu;
dkrouniyar@wpi.edu; kmbhatt@wpi.edu)

Fig. 1: Texture on Plane

The dataset was generated with a large textured plane
resting at Z=0. The texture is shown in Fig. 1. We have a
camera facing the plane and an IMU attached on the camera.
We assume there is no relative R and T between the two.
Now, given the trajectory data, there are several approaches to
produce IMU data. One such technique involves using the data
to compute the trajectory’s first and second order derivatives,
after which noise is injected (as demonstrated in [5]). An
alternate technique is to use the IMU model in MATLAB,
which gives acceleration, angular velocity, and orientation
data in exchange for gyroscope and accelerometer inputs. The
former of these two was utilized to produce the required IMU
data. Moreover, for IMU data stream, only frames every 10th

are taken into account. Thus, 2000 photos and 20,000 IMU
readings were employed for the model training. Below is an
example scene where the camera moves in Blender along the
suggested trajectory while collecting image data.

III. DEEP VIO

This section contains 3 models which we will be discussing.
They are VO Resnet, Drone LSTM and VIO. We have used
a Quaternion loss function for angle and a MSE loss function
for the translation errors. The loss functions are described as
follows:

Translation Loss:

Translation loss =
1

3

3∑
i=1

(oi − li)
2

mailto:dkotadia@wpi.edu
mailto:dkrouniyar@wpi.edu
mailto:kmbhatt@wpi.edu


2

Rotational Loss:

Rotational Loss = ∥Q1 · pinv(Q2)∥

Total Loss:

Total Loss = Translation loss + Rotational Loss

The loss function described is composed of two distinct
components designed to effectively train a model handling
both translation and rotational predictions. The translation
loss is calculated as the mean squared error between the
predicted and actual translation vectors, focusing on the direct
differences in positional elements. For the rotational aspect,
the loss is computed using the norm of the quaternion product
between the predicted rotation quaternion and the pseudo-
inverse of the true rotation quaternion, which quantifies the
discrepancy in orientation by assessing the rotational align-
ment. This combined loss function, by summing the translation
and rotational losses, ensures a comprehensive assessment of
both position and orientation errors, making it particularly
suitable for applications in robotics and navigation where
accurate spatial and angular estimations are critical.

A. VO Net

The V O ResNet model is a sophisticated convolutional
neural network tailored for visual odometry, leveraging a
combination of convolutional layers, residual blocks, and fully
connected layers to process and integrate diverse data inputs
efficiently. It starts with a convolutional layer followed by
batch normalization to extract preliminary features, which are
further refined through strategically layered residual blocks
to enhance the network’s depth and learning capability with-
out encountering the vanishing gradient problem. The archi-
tecture incorporates adaptive pooling and a series of fully
connected layers that not only process the visual data but
also integrate additional sensory inputs through concatenation,
allowing for nuanced feature integration. This model uses
dropout for regularization and ReLU activations to maintain
non-linearity, supporting its robustness in learning complex
patterns necessary for precise visual odometry tasks. This
structured approach ensures the network is capable of handling
the intricate requirements of visual processing applications,
making it ideal for deployment in dynamic environments
where precise motion detection and navigation are crucial. Fig.
2 below shows us the architecture of the described model.

B. IO Net

The DroneLSTM model is an architecture specifically de-
signed to address the complex requirements of drone navi-
gation and control, using recurrent neural network principles.
Constructed using the PyTorch library, this model incorporates
an LSTM (Long Short-Term Memory) layer that processes
sequential data, making it ideal for time-series inputs like those
encountered in drone flight dynamics. The model begins with
an LSTM layer configured to handle input sequences with a
designated size and transform these through multiple recurrent
layers, encapsulating the ability to remember patterns over

Fig. 2: VO ResNet

time. This is crucial for maintaining stateful information across
the drone’s flight trajectory.

Following the LSTM layer, the architecture features several
fully connected (dense) layers aimed at refining the LSTM
outputs to specific tasks: one layer outputs the drone’s posi-
tional data, while another focuses on its orientation, which
are critical components for precise navigation and control.
The outputs from these layers are then merged, forming a
comprehensive output vector that includes both pose and
orientation data. This setup ensures that the model not only
captures complex dependencies within the input data but also
translates these into actionable insights in real-time, making
it highly effective for applications requiring dynamic response
and acute accuracy, such as autonomous drone flight and real-
time control systems. Fig. 3 shows the architecture of the
model.

C. VIO Net

Here, Fig. 4 is the final architecture used in the implemen-
tation of the network.

Fig. 5 to Fig. 11 shows the trajectories we have used to
train the network. Trajectories have been generated using the



3

Fig. 3: LSTM network

method described in [6].

IV. RESULTS

rotation loss plot, translation loss plot, training loss plot Fig.
12 shows the trajectory we used to test the network. We get
a output similar to Fig. 11 as shown in the Fig. 13. We can
observe that the output trajectory thus estimated is similar to
the one in the test case.

We can see the individual output for each of the 3 models
as follows:

VO Output Fig. 19, Fig. 17 shows the plot for output.
IO Output Fig. 26, Fig. 28 shows the plot for output. For the
test set, we get the following outputs:

VIO Output The following output is of the VIO network.
The trajectory is not followed and the performance leaves a
lot to be desired.

V. FUTURE SCOPE

In the future scope of this work, we can improve the network
by adding attention mechanism, using multi-modal fusion and
designing a custom loss heuristic for the same. We can also
improve on the data generation method and create a standard
way to sync the time frame of for the same. Correct hyper-
parameter tuning will help in getting better output.

REFERENCES

[1] J. R. Rambach, A. Tewari, A. Pagani, and D. Stricker, “Learning to fuse:
A deep learning approach to visual-inertial camera pose estimation,” in
2016 IEEE International Symposium on Mixed and Augmented Reality
(ISMAR), 2016, pp. 71–76.

[2] A. Y. A. Y. Muhammet Fatih Aslan, Akif Durdu, “Hvionet: A deep
learning based hybrid visual–inertial odometry approach for unmanned
aerial system position estimation,” vol. 155, 2022, pp. 461–474.

[3] D. DeTone, T. Malisiewicz, and A. Rabinovich, “Superpoint: Self-
supervised interest point detection and description,” 2018.

Fig. 4: VIO Net

Fig. 5: Training Trajectory 1

[4] P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich, “Superglue:



4

Fig. 6: Training Trajectory 2

Fig. 7: Training Trajectory 3

Fig. 8: Training Trajectory 4

Learning feature matching with graph neural networks,” 2020.
[5] “prgumd/oystersim,” GitHub, 10 2023. [Online]. Available: https:

Fig. 9: Training Trajectory 5

Fig. 10: Training Trajectory 6

Fig. 11: Training Trajectory 7

//github.com/prgumd/Oystersim
[6] [Online]. Available: https://rbe549.github.io/rbe595/fall2023/proj/p0/

https://github.com/prgumd/Oystersim
https://github.com/prgumd/Oystersim
https://rbe549.github.io/rbe595/fall2023/proj/p0/


5

Fig. 12: Test Trajectory

Fig. 13: Test Trajectory output

Fig. 14: Trainied Model overfitting on the train data

Fig. 15: X,Y and Z VO Output overfitting for test trajectory



6

Fig. 16: Quaternion VO Output compared with the Ground
Truth

Fig. 17: VO Output for test trajectory



7

Fig. 18: X,Y and Z for VO Output for test trajectory

Fig. 19: Quaternion VO Output compared with the Ground
Truth



8

Fig. 20: IO output trajectory overfitting on train data

Fig. 21: Variation in X, Y and Z for IO Network



9

Fig. 22: Variation in Quaternions for IO Network

Fig. 23: IO output trajectory



10

Fig. 24: Variation in X, Y and Z for IO Network

Fig. 25: Variation in Quaternions for IO Network



11

Fig. 26: VIO output trajectory

Fig. 27: Variation in X, Y and Z for VIO Network



12

Fig. 28: Variation in Quaternions for VIO Network


	Introduction
	Dataset Generation
	Deep VIO
	VO Net
	IO Net
	VIO Net

	Results
	Future scope
	References

