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Abstract—This paper presents a novel approach to odometry
estimation using synthetic data for computer vision applications
in robotics. We generate a controlled dataset combining RGB
images and six-degree-of-freedom inertial measurement unit
(IMU) data, synthesized in Blender. This approach circumvents
the limitations of traditional real-world datasets by allowing
precise control over experimental variables. We evaluate three
neural network architectures designed to process vision-only,
IMU-only, and integrated sensor data, demonstrating the utility
of synthetic environments in enhancing the accuracy of odometry
estimations in robotics.

Index Terms—Visual Inertial Odometry, Sensor Fusion,

INTRODUCTION

Classical odometry estimation techniques in robotics have
traditionally relied on feature detection and tracking, meth-
ods that require meticulous calibration and are sensitive to
environmental variances. These challenges have prompted an
exploration into the potential of deep learning approaches,
which can potentially bypass some of the limitations inherent
in classical methods by using deep feature matching tech-
nologies like SuperPoint or SuperGlue. While these advanced
techniques offer robust alternatives for processing visual data,
their application to inertial data remains complex due to the
fundamentally different nature of the data involved.

The integration of visual and inertial sensors (VI-fusion)
using deep learning is still an emerging field, with limited
studies successfully combining these technologies. This paper
seeks to bridge this gap by proposing three innovative deep
learning architectures designed to predict relative camera poses
from synthetic datasets created in Blender. These architectures
include a CNN-LSTM network for image input, an LSTM
network for IMU data, and a hybrid model that integrates
both data sources. Each model outputs a translation vector
(x, y, z) and a rotation quaternion ([x, y, z, w]), tailored
to mimic real-world dynamics in a controlled environment.
Through this research, we aim to demonstrate the effectiveness
of deep learning models in overcoming the challenges posed

by classical odometry techniques, providing a comparative
analysis of their performance using various loss functions.

I. SYNTHETIC DATA GENERATION - DATASET

A. Trajectory Generation - MATLAB

The dataset for this study was meticulously crafted to
simulate realistic aerial robot trajectories. Utilizing MATLAB,
we generated 3D trajectory data reflecting typical quadrotor
movements. The IMU sensor function simulated the read-
ings of an actual IMU sensor, incorporating additional noise
to enhance realism. The sensor operated at a frequency of
1000Hz, and trajectory data was segmented into corresponding
timesteps. This data was exported to CSV files for subsequent
processing in Blender using Python scripts.

B. Data Processing and Setup

Before rendering, the CSV files containing trajectory and
IMU data were processed using Python scripts. This step en-
sured that the data could be accurately interpreted by Blender’s
rendering engine, maintaining consistency across all generated
datasets.

C. Image Rendering - Blender

For visual data generation, a base plane with a varied image
texture was created in Blender, representing the ground over
which the simulated aerial vehicle would navigate. The trajec-
tory and orientation data, prepared in the previous step, were
encoded within a Blender script. This script automated the
rendering process, generating frames for each timestep across
the entire trajectory. Each frame was rendered as .png image
at 320x240p resolution to ensure fast rendering. Ten sets of
renders were produced for ten distinct simulated trajectories;
nine sets were used for training our models, and one set
was reserved for testing purposes. Side-by-side image plots
included below illustrate the alignment between the simulated
trajectories and their rendered counterparts, showcasing the
fidelity and consistency of our synthetic dataset.



Fig. 1: Trajectory Dynamics
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Fig. 2: Trajectory Simulation Characteristics - 1
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Fig. 3: Trajectory Simulation vs Rendered - 1



Fig. 4: Trajectory Dynamics
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Fig. 5: Trajectory Simulation Characteristics - 2
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Fig. 6: Trajectory Simulation vs Rendered - 2



II. VISUAL ODOMETRY

A. Network Pipeline

The model architecture employed for visual odometry ro-
bustly combines Convolutional Neural Networks (CNNs) with
Long Short-Term Memory (LSTM) networks. The detailed
process flow includes:

• Feature Extraction: The initial layers are CNNs designed
to identify spatial patterns within consecutive grayscale
image frames. These layers are enhanced with batch
normalization and ReLU activation functions, improving
the efficiency of feature extraction.

• Feature Refinement: Following CNN processing, a fully
connected layer refines these features to prepare them for
temporal analysis.

• Temporal Processing: An LSTM layer takes over, pro-
cessing the sequential feature vectors. This layer is crucial
for capturing the temporal dependencies between frames
by maintaining hidden states over time, which is essential
for contextual understanding and temporal dynamics.

• Prediction Output: The LSTM’s output is then passed
through another fully connected layer to align the dimen-
sions with the target output variables.

• Training and Loss Computation: The model is trained
using a mean squared error loss function, enabling itera-
tive refinement of predictions. This process enhances the
model’s accuracy in estimating position and orientation
from sequential image data.

This integration of CNNs and LSTMs allows the model
to effectively utilize both spatial and temporal information,
making it suitable for applications in navigation, robotics, and
augmented reality.

B. Data Preprocessing and Training

During the training phase, the dimensions of the images are
critical, significantly influencing both the model’s efficacy and
computational demands. Key aspects of the image processing
include:

• Image Dimensions: Images are uniformly
resized to 128x128 pixels using the
transforms.Resize((128, 128))
transformation. This standardization ensures consistency
and facilitates processing by the neural network.

• Grayscale Format: To reduce computational complexity,
images are converted to grayscale, which comprises a
single channel denoting light intensity. This simplifies the
processing compared to multi-channel color images (e.g.,
RGB).

• Input to CNN Layers: The resized grayscale images are
fed into convolutional layers (CNN), which extract spatial
features essential for visual odometry. These layers use
filters to detect patterns, edges, and textures.

• Pooling Operations: Post-convolution, max-pooling op-
erations reduce the feature map size while retaining
important features, utilizing a 2x2 kernel and a stride of 2
(nn.MaxPool2d(kernel-size=2, stride=2)).
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Fig. 7: CNN-LSTM Model Architecture for Visual Odometry

• Flattening: The output from the CNN layers is flattened
into a one-dimensional vector before it proceeds to the
fully connected layers. This process converts the spatial
information into a format suitable for subsequent process-
ing.

Standardizing image size and converting to grayscale en-
sures consistent input, promoting effective learning and feature
extraction. Managing image resolution balances computational
resources with the information content necessary for accurate
predictions.

C. Results Analysis

Despite achieving convergence after 12 training epochs, the
model exhibited inaccuracies on validation and test datasets,
potentially due to overfitting. Overfitting likely occurred as the
loss stabilized within the first 10 epochs with minimal subse-
quent improvement. Additionally, inaccuracies might also stem
from improperly scaled orientation biases.

III. INERTIAL ODOMETRY

1) Introduction: Inertial Odometry plays a crucial role in
navigation systems, offering estimates of vehicle position and
orientation by integrating measurements from inertial sensors
such as gyroscopes and accelerometers. Conventional methods
typically involve complex signal processing techniques and
mathematical models, which may encounter challenges in
handling non-linear motion dynamics and environmental un-
certainties. Deep learning approaches, particularly those based



Fig. 8: Training and Validation Loss - Visual Network

on Long Short-Term Memory (LSTM) networks, offer promis-
ing capabilities in learning temporal patterns and capturing
intricate dependencies within sequential data. In this paper, we
introduce an LSTM-based architecture for Inertial Odometry,
designed to enhance prediction accuracy and robustness in
diverse operating conditions.

A. Network Pipeline

Our proposed architecture consists of an LSTM network
followed by a fully connected layer. The LSTM network
processes sequential input data from inertial sensors, while the
fully connected layer generates predictions for vehicle position
and orientation. The LSTM architecture enables the model to
effectively capture temporal dependencies and adapt to varying
motion dynamics, making it well-suited for Inertial Odometry
tasks. Additionally, the use of deep learning techniques allows
the model to automatically learn relevant features from raw
sensor data, reducing the reliance on handcrafted algorithms
and improving overall performance.

B. Data Preprocessing and Training

The training process is designed to optimize the model
parameters to effectively minimize the Mean Squared Error
(MSE) loss between the predicted values and ground truth.
The overall training strategy includes:

• Optimizer and Learning Rate: We utilize the Adam
optimizer, known for its efficiency in handling sparse
gradients and adaptive learning rate capabilities. The
initial learning rate is set to 0.001.

• Epochs and Evaluation: The model undergoes training
for 100 epochs. During this period, it is evaluated period-
ically on both the training and validation sets to monitor
loss convergence and ensure that overfitting is minimized.

• Training Goal: The primary aim is to learn robust repre-
sentations from inertial sensor data that accurately capture
the dynamics of vehicle motion and orientation.
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Fig. 9: Ground Truth vs Predicted Data - Visual Odometry

Before the actual training of the LSTM model, specific pre-
processing steps are undertaken to optimize data compatibility
and learning efficiency:

• Normalization: Sensor measurements are normalized us-
ing Min-Max scaling. This process scales the data to fall
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Fig. 10: LSTM Network Architecture - Inertial Network

within a specific range, which is crucial for mitigating
issues due to varying sensor scales and aids in faster
convergence during training.

• Data Splitting: The dataset is divided into training and
validation sets. This split is critical for assessing model
performance comprehensively and preventing overfitting
during the training process.

Hyperparameters:
• Optimizer: Adam
• Learning Rate: 0.001
• Epochs: 100
• Loss Metric: Mean Squared Error (MSE)
These steps prepare the data in a format that is well-

suited for training the LSTM-based Inertial Odometry model,
facilitating efficient and effective learning.

C. Results Analysis

The evaluation of the LSTM-based Inertial Odometry model
revealed disappointing outcomes, as the predicted trajectory
outputs were significantly inaccurate when compared to the
ground truth. The primary observation was that the predicted
trajectories were linear and failed to replicate the curved paths
evident in the 3D ground truth data.

• Deviation from Expected Path: The most critical issue
observed was the straight-line trajectory predicted by
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Fig. 11: Ground Truth vs Predicted Data - Inertial Odometry

the model, which starkly contrasts with the complex,
curved trajectories typical in realistic vehicle motions.
This suggests fundamental flaws in either the model’s
capacity to capture complex dynamics or in the training
process itself.



• Potential Causes for Poor Performance:
– Inadequate Model Complexity: The model may be

underfitting the data, indicating that the architecture
is not complex enough to learn the intricate patterns
and relationships present in the training data.

– Improper Training or Convergence Issues: The train-
ing process might not have been adequate. Possible
issues include insufficient training epochs despite the
use of 100 epochs, or premature convergence of the
learning process, where the optimizer settled at a
suboptimal point due to issues like high learning rate
or inadequate loss function settings.

– Data Quality and Preprocessing: There might be
issues with how the data was scaled or normalized,
or the initial assumptions used in data preprocessing
could have distorted the sensor data’s informative
features.

• Comparative Analysis: Graphical representations com-
paring the predicted trajectories with the ground truth
highlighted these inaccuracies clearly. Such visualizations
are crucial for diagnosing the specific nature of the
discrepancies.

Fig. 12: Training and Validation Loss - Inertial Network

This analysis underscores the need for a thorough review
of both the model architecture and the training regimen.
Enhancements in these areas, along with a reassessment of
data preprocessing techniques, will be vital for achieving more
accurate and realistic trajectory predictions in future iterations
of the model.

IV. VISUAL INERTIAL ODOMETRY

We Combined the architectures from the visual and inertial
networks and then passed it through a fully connected layer.
We merged the network by passing the imu data and image
data through the LSTM(combined) and then passed it through
the Fully Connected layer. However, due to the mismatch in
the IMU and Image frequencies, we weren’t able to get viable

results from the network. We present the network and the
training and validation losses in fig. 13 and fig. 15 respectively.

A. Network Pipeline

Fig. 13: Network Architecture -Visual and Inertial

Fig. 14: General Network Architecture -Visual and Inertial

B. Training and Testing

We trained the network for 25 epochs after which the loss
remained constant. However, the data used in the network
training was one to one due to time constraint although we
generated the data in the required format, we weren’t able
to train the network on the intended data. we used Adam
optimizer with learning rate of 0.01 and MSE loss.

C. Results Analysis

The model exhibited suboptimal performance during both
training and validation phases, indicating challenges in learn-
ing from the provided dataset. The model struggled to ef-
fectively capture the underlying patterns and relationships



Fig. 15: Training and Validation Loss - Visual Inertial Network

within the data, leading to unsatisfactory results in terms of
predictive accuracy and generalization. This poor performance
underscores the complexity of the task at hand and highlights
the need for further investigation into model architecture, data
preprocessing, and training methodologies to improve overall
performance.

CONCLUSION

This study aimed to estimate odometry using synthetic
data generated in Blender for computer vision applica-
tions in robotics. We developed three distinct neural net-
work architectures—visual-only, inertial-only, and a combined
visual-inertial approach, utilizing LSTM and CNN-based net-
works. Although these models were designed to process and
fuse RGB images and IMU data to predict translation vectors
and rotation quaternions, the results were unsatisfactory. The
integrated visual-inertial model, expected to outperform the
single-sensor models, did not meet performance expectations,
highlighting significant challenges in model training and data
processing accuracy.

FUTURE WORK

The results underscore the need for substantial improve-
ments in both the data quality and model architecture. Fu-
ture research should focus on integrating additional sensor
modalities, such as LIDAR or depth cameras, to enhance pose
estimation accuracy. There is also a critical need to refine noise
reduction techniques and develop more sophisticated neural
network architectures that can handle complex environmen-
tal interactions more effectively. Additionally, experimenting
with larger, more complex environments could provide deeper
insights into the scalability and practical deployment of these
models across diverse operational settings. Further efforts to
optimize data preprocessing and model tuning are essential to
achieving the high levels of accuracy required for practical
applications in robotics.
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