
Deep and Un-Deep Visual Inertial Odometry Using
CNN, FlowNet and LSTM

Abhijeet Sanjay Rathi
Worcester Polytechnic Institute

asrathi@wpi.edu

Anuj Jagetia
Worcester Polytechnic Institute

ajagetia@wpi.edu

Abstract—In this paper, we propose a novel deep learning archi-
tecture for predicting relative camera poses utilizing both visual
and inertial sensor data. Our approach integrates Convolutional
Neural Networks (CNNs), Long Short-Term Memory (LSTM)
networks, and a fusion strategy to effectively leverage information
from image sequences and inertial measurements. We begin by
constructing a combination of architectures, comprising a 3-layered
CNN and an LSTM network, to predict relative poses based
solely on visual input. Additionally, we develop an LSTM network
to infer relative poses using inertial data alone. Subsequently,
we introduce a Deep Visual-Inertial (VI) Fusion Network that
seamlessly integrates the outputs of the vision-based and IMU-
based networks. Our proposed framework, termed Deep VI Fusion,
demonstrates promising results in accurately predicting relative
camera poses. We didn’t achieve a better accuracy for test dataset
but for validation, we did achieve a accuracy of 79%.

I. INTRODUCTION

The training pipeline involves several key steps to effectively
train a visual-inertial odometry (VIO) model. At the core of the
process is the utilization of a dataset containing both image
data and inertial measurement unit (IMU) sensor readings.
Each training iteration revolves around generating batches of
samples from this dataset, pairing images with corresponding
IMU measurements.

With the data prepared, the model undergoes a forward pass
to predict the pose based on the provided inputs. This prediction
is then compared to the ground truth pose using a predefined
loss function. Through backpropagation, the model’s parameters
are adjusted to minimize this loss, aligning the predicted poses
more closely with the ground truth values.

Throughout the training phase, meticulous monitoring of the
model’s performance occurs. This entails evaluating its perfor-
mance on both training and validation datasets. Loss values are
recorded for each iteration and epoch, offering insights into
the model’s learning progress over time. Additionally, periodic
checkpoints are saved to capture the model’s state at various
stages, facilitating easy resumption of training and ensuring the
preservation of learned insights.

To optimize the learning process, the Adam optimizer is
employed, featuring a dynamic learning rate schedule that
adjusts based on the current epoch. This adaptive learning rate
mechanism enables fine-tuning of the optimization process, po-
tentially enhancing convergence speed and overall performance.

Visualizations of loss metrics are generated and saved
throughout training, offering a visual representation of the
model’s performance trends. These visualizations serve as valu-

Fig. 1. Visual , Inertial , VIO[1]

able diagnostic tools, aiding in the identification of potential
issues and guiding adjustments to the training process. Fur-
thermore, the training process is logged using the Weights and
Biases (wandb) library, enabling seamless tracking and sharing
of experimental results, fostering collaboration and facilitating
reproducibility.

II. RELATED WORK

This section provides an overview of the evolution of Visual-
Inertial Odometry (VIO) techniques, which are classified into
three main categories: Classical Methods, Data-Driven Methods,
and Temporal Adaptive Inference.

Classical Methods, which were prevalent in the early stages of
VIO development, primarily employed sensor fusion techniques
such as Extended Kalman Filters (EKF) and Unscented Kalman
Filters (UKF) to integrate visual and inertial measurements
for accurate motion estimation. A notable contribution in this
domain is the work by Mourikis and Roumeliotis, who intro-
duced a tightly-coupled VIO framework using an EKF for state

mailto:asrathi@wpi.edu
mailto:ajagetia@wpi.edu


estimation. Subsequent research efforts expanded upon classical
VIO methods to tackle challenges like sensor calibration, feature
tracking, and drift mitigation.

In recent years, there has been a significant shift towards
Data-Driven Methods, fueled by the success of deep learning in
various computer vision tasks. Researchers have explored the
application of convolutional neural networks (CNNs), recurrent
neural networks (RNNs), and hybrid architectures to directly
learn motion patterns from sensor data. For example, Clark
et al. proposed a deep learning-based VIO system trained
on large-scale datasets, demonstrating superior performance in
challenging environments. Similarly, Zhu et al. introduced a
novel VIO framework leveraging recurrent neural networks for
temporal adaptive inference, enabling robust motion estimation
in dynamic scenes.

A key idea in data-driven VIO techniques is temporal adap-
tive inference, which enables dynamic motion estimate mod-
ifications in response to shifting ambient factors and sensor
attributes. Long Short-Term Memory (LSTM) networks, which
are well-known for their capacity to represent sequential data
and long-term dependencies, are essential to this methodology.
Temporal adaptive inference improves the durability and ac-
curacy of VIO systems by combining feedback mechanisms
and adaptive learning algorithms, especially in situations when
motion dynamics or sensor noise levels shift.

Overall, the development of VIO techniques shows a shift
away from conventional sensor fusion strategies and toward
more advanced data-driven approaches. To improve real-time
performance and adaptability in dynamic contexts, temporal
adaptive inference is becoming increasingly important.

III. ORGANIZATION

Further this paper discusses about Methodology: Describes
the proposed deep learning architecture. Each Network sub-
section explains the architecture and functionality of these
components. Experiment Setup: Details the setup for generating
synthetic data using Blender, introducing noise, preprocessing
images, and implementing training procedures. It also dis-
cusses the evaluation metrics and tools used for visualizing
and comparing trajectory results. Conclusion: Summarizes the
key findings and contributions of your work, emphasizing the
promising results achieved in predicting relative camera poses
using the proposed deep learning architecture. Future Work:
Outlines potential directions for future research, highlighting
opportunities to enhance model performance, robustness, and
adaptability in real-world scenarios.

IV. METHODOLOGY

A. Visual Encoder Net

This component processes image data using convolutional
neural networks (CNNs) to extract relevant features. It com-
prises of 4 encoded convolutional layers with kernel size varying
from 7 to 3, with batch normalization, leaky ReLU activation
with a neagtive slope of 0.1, and dropout of 0.2 for regulariza-
tion. Additionally, an LSTM layer with input size of 512 and
the batch first parameter is set to True, this layer is utilized to

capture temporal dependencies in sequential data, enhancing the
model’s ability to handle time-varying inputs.

Fig. 2. Train loss vs epoch

Fig. 3. Train Val vs epoch

B. Inertial Encoder Net
The inertial encoder processes inertial sensor data using 3 1D

convolutional layers with input of channel 6 followed by batch
normalization, leaky ReLU activation with a negative slope of
0.1, and dropout of 0.1. Similar to the visual encoder, it employs
1 LSTM layer which takes the input as the output of the conv
1D layers to capture temporal dynamics in the sensor readings,
enabling the model to learn from sequential data and atlast there
is one linear layer which fives back the output with 6 channels.

Fig. 4. Avg Epoch vs Train loss

C. Visual Inertial Fusion Net
This component combines information from both the visual

and inertial encoders to make joint predictions. The outputs
from the visual and inertial encoders are concatenated and
passed through additional layers, including 1D convolutional
layer followed by LeakyRelu with slope of -0.1 and again a
linear layer, for fusion and final pose prediction.



Fig. 5. Avg Epoch vs Val Loss

Fig. 6. Avg Iteration vs Loss

D. FlowNet

This FlowNet-S network is a pretrained on the FlyingChairs
dataset for optical flow estimation. We implemented this pre-
trained network in the backend which changes the weight of
the input to the convlution layers.

V. EXPERIMENT SETUP

To generate synthetic data, We used blender, in blender we
created a large plane with varied image textures, ensuring that
the camera was positioned to capture images of the floor. To
generate the trajectory in the blender so that the camera follow
the path we wrote the equations for the trajectory like circle ,
spiral and etc., it can be as many as we want to create the data,
which gives us the ground truth in a csv file with position ,
quaternion angles, velocity and angular velocity. While the data
rates of the IMU and camera were not synchronized, both were
generated at the same rate for simplicity, with only every 10th
sample of the image utilized for training while all IMU values
were retained. This mimicked a scenario of a 1000Hz IMU and
a 100Hz camera. Image textures on the floor were randomized,
sourced from internet images, and scaled appropriately to ensure
that the edges of the plane were not visible from the camera,
thus maintaining data quality.

To introduce noise in the data we ran our reading from
the ground truth and gave it to a imu sensor and calculated
acceleration with the velocities we had and also converted
quaternion into euler angles. From this we get data which
accounts for real world conditions.

We resized the image from the data we got from blender into
320x180. this image is passed to our network. Before sending
the data directly to the encoder network, first we used the
Flownet network by loading a pre-trained model directly. The

Fig. 7. Avg Epoch vs Train loss

Fig. 8. Avg Epoch vs Val Loss

input size of the image is 320x180 and the total number of
Epochs is 300 with batch size of 15. We tried implementing
SGD, Adam and AdamW optimizer with varying learning rate
of 5e-5 for epochs less than 250 and after that from 250-300
epochs we kept the learning rate to be 1e-6 and we kept a
constant weight decay of 5e-6 throughout the whole process.

During training, we apply the mean squared error (MSE) loss
to reduce the pose estimation error given and we also apply the
cosine embedded loss to reduce the angle estimation error. For
the overall lost we took the weighted average of these two loss
with 40 % of pose loss and 60 % of angle loss.

To visualise and evaluate the trajectory we used a rpg toolbox
repo from github by giving it the trained model we got from all
three networks and the ground truth data which we had to get
the comparison.

Optimizer AdamW SGD Adam

Train 0.0297 0.0394 0.08572

Validation 0.2149 0.313 0.2271

TABLE I
COMPARISON OF DIFFERENT OPTIMIZERS

VI. CONCLUSION

We’ve developed a novel deep learning architecture for pre-
dicting relative camera poses using both visual and inertial
sensor data. Our approach combines Convolutional Neural Net-
works (CNNs), Long Short-Term Memory (LSTM) networks,
and a fusion strategy to effectively utilize information from
image sequences and inertial measurements. Our framework,
termed Deep VI Fusion, demonstrates promising results in



Fig. 9. Avg Iteration vs Train

Fig. 10. Trajectory Path in Blender

accurately predicting relative camera poses. This achievement
represents a significant advancement in visual-inertial odometry,
showcasing the potential of deep learning approaches to enhance
performance and efficiency in pose estimation tasks.

VII. FUTURE WORK

Future work in the realm of Deep learning-based Visual-
Inertial Odometry (VIO) involves addressing both opportunities
and challenges. While these methods hold promise in surpass-
ing classical techniques by harnessing deep neural networks’
capacity to extract intricate features from raw data, there are
critical areas for improvement. Initial experiments often rely
on synthetic data in controlled environments; however, future
endeavors should prioritize incorporating real-world datasets to
validate model performance across diverse and dynamic con-
ditions. Moreover, efforts should be directed towards enhanc-
ing model robustness to environmental variations like lighting
changes, surface textures, and dynamic scenes. This could entail
exploring data augmentation techniques or domain adaptation
methods. Additionally, investigating adaptive fusion strategies
that dynamically adjust the weighting between visual and in-
ertial modalities based on scene complexity, motion dynamics,
or sensor data reliability could significantly enhance efficiency
and accuracy across various scenarios.

VIII. ACKNOWLEDGEMENT

We express our sincere gratitude to Nitin J. Sanket for
their invaluable guidance. Thanks to Worcester Polytechnic

Fig. 11. Network Architecture

Fig. 12. Circle Trajectory (Top Left: Inertial, Top Right: Visual, Bottom Left:
VIO-SGD, Bottom Right: VIO-AdamW)

Institute for providing resources and our peers for their support
throughout the whole research.

REFERENCES

[1] https://rbe549.github.io/spring2024/proj/p4/
[2] M. Yang, Y. Chen, H.S. Kim, Efficient Deep Visual and Inertial Odometry

with Adaptive Visual Modality Selection 2020.
[3] P. Fischer, A. Dosovitskiy, E. Ilg, P. Hausser, C. Hazırbas¸, V. Golkov,

University of Freiburg, Technical University of Munich FlowNet: Learning
Optical Flow with Convolutional Networks 2020.

[4] https://github.com/uzh-rpg/rpg trajectory evaluation
[5] https://github.com/Aceinna/gnss-ins-sim

https://rbe549.github.io/spring2024/proj/p4/
https://github.com/uzh-rpg/rpg_trajectory_evaluation
https://github.com/Aceinna/gnss-ins-sim

	Introduction
	Related Work
	Organization
	Methodology
	Visual Encoder Net
	Inertial Encoder Net
	Visual Inertial Fusion Net
	FlowNet

	Experiment Setup
	conclusion
	Future Work
	acknowledgement
	References

