
From Images to Inertia: Deep Learning’s Take on
Visual Inertial Odometry

Computer Vision (RBE549) Project 4 - Deep Visual-Inertial Odometry

Hrishikesh Pawar
MS Robotics Engineering

Worcester Polytechnic Institute
Email: hpawar@wpi.edu

Tejas Rane
MS Robotics Engineering

Worcester Polytechnic Institute
Email: turane@wpi.edu

Abstract—Accurate pose estimation remains a critical chal-
lenge in the field of robotics and autonomous systems, partic-
ularly in GPS-denied environments. Visual-Inertial Odometry
(VIO) offers a promising solution by combining visual infor-
mation with inertial measurements to estimate the pose of a
device. However, traditional VIO systems are often limited by
their dependency on environmental conditions and the robustness
of feature extraction techniques. This paper proposes a novel deep
learning-based approach to enhance the robustness and accuracy
of pose estimation in VIO systems. We introduce a hybrid
neural network architecture that integrates convolutional neural
networks (CNNs) for image processing with Long Short-Term
Memory networks. (LSTMs) for effective handling of sequential
inertial data. A comprehensive synthetic dataset, generated using
Blender, provides a controlled environment for both training and
evaluating the proposed model.

I. INTRODUCTION

The advent of autonomous vehicles and robotics has height-
ened the necessity for robust and precise navigation systems.
Traditional methods often rely on GPS or extensive sensor
suites, which can be hindered by environmental factors or
high costs. Visual-Inertial Odometry (VIO) presents a com-
pelling alternative by fusing camera imagery and inertial
measurements to estimate the pose of a device relative to
its environment. However, VIO systems confront significant
challenges in terms of robustness, especially in dynamic and
visually complex environments.

In this paper, we explore an approach to VIO that integrates
deep learning to improve pose estimation accuracy and ro-
bustness. Traditional VIO systems often struggle with feature
degradation in adverse conditions, such as low light or high
dynamic scenes. By employing deep learning models, we aim
to extract and utilize complex features more effectively than
conventional algorithms, potentially overcoming some of the
inherent limitations of traditional methods.

Our approach is heavily inspired by recent advancements
in the field, particularly the integration of neural networks
for feature extraction and pose prediction. This work builds
upon foundational theories in both computer vision and inertial
measurement analysis.

A. Organization of the paper

The paper is structured as follows:

• Section II: Data Generation - Discusses the creation of
a synthetic dataset using Blender for realistic simulation
of visual and inertial data, which serves as a foundation
for training and evaluating our models.

• Section III: Deep Learning-Based Odometry Stack
- Details the architecture, training, and integration of
deep learning models for enhancing the performance of
odometry systems.

• Section IV: Experiments and Discussions - Presents
experimental setups, results, and a thorough discussion
on the performance of the proposed models compared to
traditional VIO systems.

• Section V: Conclusion - Summarizes the findings, dis-
cusses the implications of this research, and suggests
directions for future work.

• Section VI: Acknowledgements - Offers thanks to those
who provided support or contributions that were signifi-
cant to the research.

II. DATA GENERATION

A. Simulation of Dynamic Trajectories in Blender

This section describes the setup and methodology for gener-
ating realistic visual and inertial data through simulation. The
environment for these simulations was established in Blender.
A large 3D mesh plane, textured with a high-resolution image,
was set as the visual backdrop, serving as the visual ground
truth. A virtual camera and an inertial measurement unit
(IMU), which have no relative rotation (R) or translation
(T) between them, were spawned within this environment
to accurately capture the scene and generate corresponding
sensor data.

The trajectory design involved programming nine distinct
trajectories to simulate various flight patterns of an aerial
robot. Refer to Fig. 1 for visualizations of these trajectories.

Dynamic calculations for each trajectory were conducted
to model the physical movements realistically. The linear
accelerations and angular velocities were derived based on
the temporal spacing (delta t) between each rendered frame,
ensuring temporal coherence and physical accuracy. Velocities
were calculated using the following equation:

v =
∆location

∆t
(1)



Accelerations were computed with the equation:

a =
∆v

∆t
(2)

Additionally, orientation changes were computed using sinu-
soidal functions to simulate the roll, pitch, and yaw of the
camera throughout the trajectory. Specifically, the equations
for pitch, roll, and yaw are given by:

pitch(t) = A · sin(θ(t)) · cos(θ(t)) (3)

where A is the amplitude (maximum angle of pitch in radians),
and θ(t) = 2π t

T is the phase of the cycle at time t, with T
being the total duration of the cycle.

roll(t) = A · cos(θ(t)) · cos(θ(t)) (4)

where A is the amplitude (maximum angle of roll in radians),
and θ(t) is defined in the same manner as for pitch.

yaw(t) = 0 (5)

During the data capture and storage phase, each frame
rendered by the camera and the synthetic IMU data were
precisely synchronized and recorded. This approach ensured
the creation of a dataset that included perfectly aligned visual
and inertial data, capturing accelerations and angular velocities
without any initial biases or noise, thereby representing an
ideal dataset.

B. Integration of Sensor Noise Models
To enhance the realism of the simulated dataset, sensor

noise was artificially introduced to the synthetic IMU data.
This was crucial for preparing our models to handle real-world
uncertainties and variabilities in sensor readings. We employed
OysterSim, to generate realistic IMU noise patterns.1

Utilizing the low accuracy model from OysterSim, we
aimed to approximate the noise characteristics typical of less
precise, commercially available IMU devices. This choice was
driven by our objective to develop robust algorithms capable of
performing well under practical operational conditions where
high-grade IMUs may not always be available or feasible.

In the context of neural network training, estimating and
compensating for sensor biases can pose significant challenges,
particularly when biases vary unpredictably over time. To
simplify our initial training processes and focus on core
algorithmic performance, we assumed that the biases at the
start of each data sequence were zero. This assumption aligns
with common practices in preliminary stages of algorithm
development, allowing us to primarily address the variance
introduced by noise and later incorporate bias estimation
strategies in advanced model iterations.

C. Specification of Data Structure
In our simulation, a total of 5000 samples of synchronized

IMU data and images were generated to ensure a comprehen-
sive evaluation of the pose estimation models. This data was
meticulously organized and stored in .txt formats for each
of the following.

1OysterSim Source Code: https://github.com/prgumd/Oystersim/blob/
master/code/ImuUtils.py

a) Camera Pose Data: The camera poses were recorded
for each frame, capturing both position and orientation in the
scene.

b) IMU Data: The IMU data, encompassing both accel-
eration and angular velocities, was captured simultaneously
with the camera images to maintain temporal alignment.

c) Trajectory Data: The actual trajectory data, represent-
ing the path of the camera through space, was also recorded.

d) Images: 5000 samples of images with the dimensions
640 x 480 pixels are saved in folder.

The format of each of the above are summarised in the
following Table I

Data Type Format
Camera Pose Frame number, Position (x, y, z), Rotation (roll, pitch,

yaw)
IMU Data Frame number, Acc X, Acc Y, Acc Z, Roll Vel,

Pitch Vel, Yaw Vel
Trajectory Data X, Y, Z coordinates

Image Data 5000 - 640 x 480 samples

TABLE I: Summary of Data Storage Formats

This data storage format ensured that each dataset element
is easily accessible and clearly defined, supporting both the
training of our models and subsequent performance evalua-
tions.

III. DEEP LEARNING BASED ODOMETRY STACK

In this section we talk about the three main components of
our Deep Learning based Odometry stack - Inertial Odometry,
Visual Odometry and Visual-Inertial Odometry. We also de-
scribe some of the other essential components of the pipeline
which facilitate the training process. Te schematics of our
model architectures is shown in Fig 2.

A. Creating the dataset

The drone pose data generated from Blender as described in
the previous section is in the global frame of reference, which
needs to be converted to relative poses. We also need enforce a
1 : 10 ratio of images to the IMU data (on a realistic drone, the
camera would run at around 100Hz whereas the IMU would
run at around 1000 Hz). These operations are performed while
creating the dataset for training.

We assume that we receive the images at time steps
t, t + 1, t + 2, . . .. Therefore, between time step t and t + 1,
we receive a total of 11 IMU readings and 2 images, both
time steps inclusive. To simulate this, the ground truth camera
poses corresponding to the images are first converted to
relative poses; the pose corresponding to the second image is
calculated with respect to the pose corresponding to the first
image. The input IMU data is then divided into chunks of 11
and paired with the corresponding ground truth relative poses
and images. These chunks are then split into training (80%)
and validation (20%) sets at random and used for training.

We also exploit the collected dataset of 5000 images and
corresponding IMU readings from one trajectory to increase
the size of the dataset. Based on the description in the previous
paragraph, if we enforce the 1 : 10 ration for images and IMU

https://github.com/prgumd/Oystersim/blob/master/code/ImuUtils.py
https://github.com/prgumd/Oystersim/blob/master/code/ImuUtils.py


Fig. 1: Trajectories. Left Column From top: (1) Flat Line (2) Rotated Line (3) Flat Oval (4) Rotated Oval, Right Column From
top: (5) Flat Spiral (6) Rotated Spiral (7) Fig of 8 (8) Clover, Center Bottom (9) Wavy Circle

readings, the total number of generated data samples from
one trajectory would be only 5002. Instead, we generate our
dataset using a sliding window of 2 images. Using this trick,
we are able to extract a total of 4990 data samples from a
single trajectory3.

2The first data sample would be [image at time t = 0, image at time
t = 10, and the IMU readings in between them, both time steps inclusive].
The next sample would be [image at time t = 10, image at time t = 20, and
the IMU readings in between them, both time steps inclusive], and so on.

3The first data sample would be [image at time t = 0, image at time
t = 10, and the IMU readings in between them, both time steps inclusive].
The next sample would be [image at time t = 1, image at time t = 11, and
the IMU readings in between them, both time steps inclusive], and so on.

B. Deep Inertial Odometry (IO)

The Deep Inertial Odometry network is based on the Long
Short-Term Memory (LSTM) layers, followed by fully con-
nected linear layers. The input to the network is a sequence
of IMU readings and the output prediction is the relative pose
between the first and the last reading. We use LSTM layers
because we want the network to understand the temporal re-
lation between the IMU readings to predict the corresponding
relative pose. For the activation function between the linear
layers, we use the Parametric Rectified Linear Units (PReLU)
activation function, as we observed that it performed better
as compared to the Rectified Linear Units (ReLU) activation
function.



Fig. 2: Model Architectures. From Top: (1) Visual Odometry, (2) Inertial Odometry, (3) Visual Inertial Odometry, Note: L is
sequence length

C. Deep Visual Odometry (VO)

For Deep Visual Odometry, we employ a Flownet 2.0 (1)
based encoder. The input images are concatenated in the
channels dimension4 and fed into the network. The output
features of the encoder are then passed through a LSTM
and a linear layer. The final prediction of the network is the
relative pose of camera corresponding to the second image,
with respect to the first image.

The Flownet 2.0 encoder is used in an attempt to induce
the notion of homography in the network. We want the neural
network to focus on the parts of the image which are changing
(which have high flow) and find the matching features to
calculate the odometry. We load pretrained weights of the
Flownet 2.0 encoder, and trian only the last LSTM and linear
layers.

D. Deep Visual-Inertial Odometry (VIO)

The Deep Visual-Inertial Odometry network is created as
an amalgamation of the IO and VO networks describes in
the previous subsections. The feature vectors from both the
networks are concatenated into a single input vector to a

4The final dimensions of the input vector is 6× 480× 640.

LSTM layer, followed by some fully connected linear layers.
The inputs to this network are the concatenated images for
the Flownet 2.0 encoder and the sequence of IMU readings
between the two images for the LSTM layers, and the output
prediction is the relative pose of camera corresponding to the
second image, with respect to the first image.

The motive behind this architecture is to use the initial
layers of the IO and VO networks individually as the encoders
for the inertial and visual data, and then fuse these feature
vectors to generate the final prediction. The final LSTM and
linear layers after concatenating the feature vectors should
learn to give weightage to the features (IO or VO features)
which provide a better estimate of the relative pose and predict
the final relative pose accordingly.

E. Loss Functions
A custom loss function was created to train the deep neural

networks of the Odometry stack. We use the Mean Square
Error (MSE) to regress the position part of the predicted
drone pose (x, y, z). For the angular part of the predicted
drone pose (roll, pitch, yaw) part of the pose, we use
the Geodesic Loss. Since the Geodesic loss is applied on
rotation matrices, we convert the predicted and ground truth



Euler angles to rotation matrices using PyTorch3D functions.
Both loss functions are given equal weightage for training the
models. The mathematical formulation of the loss function is
shown in Eq 6.

L = λpLMSE + λaLGeodesic,

LGeodesic = d(Rpred, Rgt) = cos−1

(
tr(RT

predRgt)− 1

2

)
(6)

where, λp and λa are hyper-parameters controlling weights
of their corresponding loss terms.

IV. EXPERIMENTS AND DISCUSSIONS

The training experiments for our Deep Learning based
Odometry stack were performed in three stages.

a) Stage 1: We trained our models on a specific trajec-
tory and performed testing on the same trajectory. We chose
the Rotated Spiral trajectory to perform these experiments (the
image of the trajectory can be found in Fig 1. We trained
the Inertial Odometry model for 25 epochs, and both Visual
Odometry and Visual-Inertial Odometry models for 50 epochs
each. The Adam optimizer is used with default parameters to
train the networks and the learning rate is set to 1e−3. The
training was performed on the Turing cluster with a batch-size
of 32. The input and output dimensions of the layers of the
models is shown in Fig 2.

The Inertial Odometry model takes only 0.2 seconds per
epoch to train. The loss curve for the training is shown in Fig
3. The loss curve is plotted in log scale to observe the training
progress is more detail. The final results, tested on the Rotated
Spiral trajectory itself, are shown in Fig 7. The top row shows
the plots of different views of the predicted and ground truth
positions, and the bottom row shows the plots for the predicted
and ground truth rotations.

Fig. 3: The training and validation loss for Inertial Odometry
trained on the Rotated Spiral Trajectory.

As it is observed in the two figures the Inertial Odometry
model is able to learn the approximate scale of the trajectory,

but it drifts a lot and is not able to maintain the spatial
information of the trajectory. The mean RMSE ATE error is
5.746083963093333 units and the median RMSE ATE error
is 3.1583412212731288 units5.

The Visual Odometry model takes about 18 seconds per
epoch to train. The loss curve for the training is shown in Fig
4. The final results are shown in Fig 8.

Fig. 4: The training and validation loss for Visual Odometry
trained on the Rotated Spiral Trajectory.

As it is observed in the two figures the Visual Odometry
model is able to learn the spatial information of the trajectory,
but it loses the scale of the trjectory and drifts a lot. The
drift in the predictions is observed to be much more than
the Inertial Odometry model. The mean RMSE ATE error
is 16.564576554050078 units and the median RMSE ATE
error is 17.791302123576823 units.

Finally, the Visual-Inertial Odometry model takes about 20
seconds per epoch to train. The loss curve for the training is
shown in Fig 5. The final results are shown in Fig 9.

As it is observed in the two figures the Visual-Inertial
Odometry model is able to learn both the scale and the spatial
information of the trajectory. There is still some drift observed
in the trajectory, which would decrease if the model is trained
for more number of epochs. The mean RMSE ATE error is
4.072604461574222 units and the median RMSE ATE error
is 4.067260719385111 units.

Based in this experiment, we observe that the Inertial
Odometry model performs better as compared to the Visual
Odometry model. The Visual-Inertial Odometry model, takes
the best parts of both these model - scale information from
the Inertial Odometry and spatial information from the Visual
Odometry - and performs better than both the individual
models.

5The units of this metric is in Blender units as the trajectories are generated
and predicted in Blender units.



Fig. 5: The training and validation loss for Visual-Inertial
Odometry trained on the Rotated Spiral Trajectory.

b) Stage 2: We trained the models on a specific tra-
jectory and tested their performance on a different unseen
trajectory. The three models trained on the Rotated Spiral
trajectory were tested on Flat Spiral trajectory. The results of
the Inertial Odometry are shown in Fig 10, Visual Odometry
results are shown in Fig 11, and the Visual-Inertial Odometry
results are shown in Fig 12.

We evaluated the RMSE ATE metrics for testing the per-
formance of the models trained on the Rotated Spiral trajec-
tory on the Flat Spiral trajectory. For the Inertial Odometry,
the mean RMSE ATE error is 6.950821275971175 units
and the median RMSE ATE error is 6.992217034006638
units. For the Visual Odometry, the mean RMSE ATE er-
ror is 33.03799379937866 units and the median RMSE
ATE error is 22.954663928788815 units. Finally, for the
Visual-Inertial Odometry, the mean RMSE ATE error is
8.471933159812883 units and the median RMSE ATE error
is 8.05451989072098 units.

In this experiment, we observe that the Inertial Odometry
actually performs better as compared to both the Visual Odom-
etry and the Visual-Inertial Odometry models. We conclude
that the Visual Odometry does not generalise on unseen data
as compared to the Inertial Odometry model. This also affects
the Visual-Inertial Odometry as the the visual part of the
model generates poor estimates. But still the Visual Inertial
Odometry model learns to give a higher weightage to the
Inertial estimates as compared to the Visual estimates. We
also conclude that it is easier for the models to show some
generalisation on trajectories that are similar in scale and shape
to the trajectories the model was trained on.

c) Stage 3: We tried training the models on multiple
trajectories, in order to check the generalizability of the
networks. We trained the model on eight trajectories (Flat Line,
Rotated Line, Flat Oval, Rotated Oval, Flat Spiral, Rotated
Spiral, Figure of 8, Clover), and held back one trajectory

(Wavy Circle) for testing. The learning rate was decreased
a lot and set at 1e−7 in order to help the model to train on
the huge dataset.

We used two methods for training the models on multiple
trajectories. In the first method, we trained the model sequen-
tially on the trajectories - we trained the model entirely on
one trajectory, then re-trained the same weights on another
trajectory and so on. Here, we observed that the model was
able to train on the later trajectories, but the model forgot the
initial trajectories. In the second method, we trained on each
trajectory from the training set in each epoch. The training
was performed for 25 epochs and the Visual Inertial Odometry
model took about 12 hours to train. But, even after 12 hours,
the model could not learn any of the training trajectories.

In this experiment, we conclude that the training strategy
that we employed was inaccurate, an a different strategy could
be explored. We also feel that the current models that we have
designed are shallow and do now have enough parameters to
learn and generalize on multiple trajectories at a time.

V. CONCLUSION AND FUTURE SCOPE

In this project, we explored Deep Visual-Inertial Odometry
and its individual components - Deep Inertial Odometry and
Deep Visual Odometry. We designed the three model archi-
tectures using different strategies to help the model achieve its
task. To train these models, we created custom trajectories to
simulate a quadrotor in Blender, and collected their inertial and
visual data. Finally, we trained the three models on multiple
trajectories and generated their simulations to compare the
performance of the three methods.

We performed multiple experiments of training the models
on different trajectories and testing the models in three stages
- training on one trajectory and testing on the same, training
one one trajectory and testing on unseen trajectory, and finally
training on multiple trajectories. In the limited time frame, we
could not perform a thorough analysis of the generalization
performance of the models on multiple trajectories.

This work can extend into multiple research directions. One
challenge that can be addressed is enhancing the robustness
and real-time performance of the deep neural networks. A
faster visual-inertial odometry pipeline can facilitate robust
localization for high-speed robots and micro aerial vehicles
(MAVs). Another potential research direction involves ex-
tending VIO capabilities to support long-term localization
and mapping. This includes tackling issues such as map
management and scalability, loop closure detection, and main-
taining consistency over prolonged periods or in large-scale
environments.

VI. ACKNOWLEDGEMENTS

Sincere gratitude is extended to Professor Nitin Sanket,
whose guidance was invaluable throughout the progression
of not only this project but the entire course. We are also
deeply thankful to the teaching assistants, Yijia Wu and Aabha
Tamhankar, whose support and insightful feedback were in-
strumental throughout the course. Further appreciation is given



to our fellow students for their constructive discussions and
collaborative spirit, which significantly enriched our learning
experience.

REFERENCES

[1] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy,
and T. Brox, “Flownet 2.0: Evolution of optical flow
estimation with deep networks,” 2016.



Fig. 6: Simulation of a Quadrotor estimating Odometry using the three methods - Inertial Odometry, Visual Odometry, Visual-
Inertial Odometry. The simulation is performed using models trained on the Rotated Spiral Trajectory. The three columns show
the predictions of these three models against the ground truth, and each row shows the time step in the trajectory. The red
arms of the drone are initially along the X-axis, the green arms are initially along the Y-axis, and the initial Z-axis is shown
by a blue marker in the center of the drone frame. The faded drone tracing the cyan trajectory shows the ground truth poses,
and the other drone tracing the magenta trajectory shows the predicted poses. We show two different views of the simulation
for each method, at each time step.



Fig. 7: Testing results of Inertial Odometry model on the Rotated Spiral Trajectory. Top row: Plots showing different views
of the positions of ground truth (red) and the predicted (blue) trajectories. Bottom row: Plots showing the angles (roll, pitch,
yaw) of the ground truth (orange) and the predicted (blue) trajectories.

Fig. 8: Testing results of Visual Odometry model on the Rotated Spiral Trajectory. Top row: Plots showing different views
of the positions of ground truth (red) and the predicted (blue) trajectories. Bottom row: Plots showing the angles (roll, pitch,
yaw) of the ground truth (orange) and the predicted (blue) trajectories.



Fig. 9: Testing results of Visual-Inertial Odometry model on the Rotated Spiral Trajectory. Top row: Plots showing different
views of the positions of ground truth (red) and the predicted (blue) trajectories. Bottom row: Plots showing the angles (roll,
pitch, yaw) of the ground truth (orange) and the predicted (blue) trajectories.

Fig. 10: Testing results of Inertial Odometry model, trained on the Rotated Spiral Trajectory and tested on the Flat Spiral
Trajectory. Top row: Plots showing different views of the positions of ground truth (red) and the predicted (blue) trajectories.
Bottom row: Plots showing the angles (roll, pitch, yaw) of the ground truth (orange) and the predicted (blue) trajectories.



Fig. 11: Testing results of Visual Odometry model, trained on the Rotated Spiral Trajectory and tested on the Flat Spiral
Trajectory. Top row: Plots showing different views of the positions of ground truth (red) and the predicted (blue) trajectories.
Bottom row: Plots showing the angles (roll, pitch, yaw) of the ground truth (orange) and the predicted (blue) trajectories.

Fig. 12: Testing results of Visual-Inertial Odometry model, trained on the Rotated Spiral Trajectory and tested on the Flat Spiral
Trajectory. Top row: Plots showing different views of the positions of ground truth (red) and the predicted (blue) trajectories.
Bottom row: Plots showing the angles (roll, pitch, yaw) of the ground truth (orange) and the predicted (blue) trajectories.


	Introduction
	Organization of the paper

	Data Generation
	Simulation of Dynamic Trajectories in Blender
	Integration of Sensor Noise Models
	Specification of Data Structure

	Deep Learning based Odometry Stack
	Creating the dataset
	Deep Inertial Odometry (IO)
	Deep Visual Odometry (VO)
	Deep Visual-Inertial Odometry (VIO)
	Loss Functions

	Experiments and Discussions
	Conclusion and Future Scope
	Acknowledgements

