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I. INTRODUCTION

The task of estimating depth from a single camera in
Computer Vision has persistently presented a formidable chal-
lenge. In response, researchers have proposed leveraging stereo
cameras positioned at a distance, facilitating depth estimation
through the correlation of features extracted from images
captured by both cameras. However, this method is constrained
by its applicability primarily to static images, thus proving
inadequate for dynamic scenes or images characterized by
motion blur—common occurrences in robotics. Despite the
promise of stereo vision in capturing three-dimensional in-
formation, its limitations in scenarios featuring motion blur
necessitate further exploration of alternative methodologies.
Addressing these constraints is pivotal for advancing depth
estimation capabilities.

In this project, our focus lies on the fusion of sensor data
from an Inertial Measurement Unit (IMU) and a camera to
ascertain the state and localization of the robot—a technique
commonly referred to as Visual Inertial Odometry (VIO).
While an IMU proves effective in capturing rapid movements
and sudden accelerations, scenarios where a camera falters,
it suffers from drift over time. Conversely, a camera excels
in providing accurate localization information but struggles
with dynamic motion. Our project employs a filter-based
stereo VIO approach, employing the MultiState Constraint
Kalman Filter (MSCKF) methodology. We plan to assess this
implementation’s efficacy by conducting tests on the Machine
Hall 01 easy subset of the EuRoC dataset

II. DATASET

This project utilizes the ”Machine Hall 01 easy” (MH 01
easy) subset from the EuRoC dataset. This data is of a quadro-
tor equipped with a 6-DoF sensor, following a predefined
flight trajectory. This system accurately tracks the quadrotor’s
movements, providing essential reference data for evaluating
the performance of our implementation.

III. IMPLEMENTATION

The functions implemented as part of the MSCKF package
are listed below:

A. initialize gravity and bias

In typical applications, an Inertial Measurement Unit (IMU)
comprises 6 degrees of freedom (DOF), with three for the
accelerometer and three for the gyroscope. Ideally, the ac-
celerometer should register [0 0 -g] in its initial state, while
the gyroscope should read [0 0 0]. Nevertheless, inherent
uncertainties in mechanical systems often lead to errors. This
function aids in mitigating such uncertainties and errors by
compensating for them.

This function initializes the initial orientation and bias based
on the first readings from the IMU. The average angular and
linear velocities are calculated from the IMU message buffer’s
first few readings. The gyro bias is initialized using the average
angular velocity, and gravity is calculated using the linear
acceleration. The normalized gravity vector is used as the
IMU state and the initial orientation are set consistently with
the inertial frame. The quaternions represent the final vector,
where GI q denotes the rotation from the inertial frame to
the body frame, which in this case is the IMU frame. The
vectors GvI and GpI represent the body frame’s velocity and
position in the inertial frame, and bG and ba are the biases
of the measured angular and linear velocities from the IMU.
The representation of the final vector is given by the following
expression

B. batch imu processing

The function operates on IMU messages stored in the
imu msg buffer, adhering to a specified time limit. It iterates
through each IMU input within this timeframe, executing the
process model until reaching the constraint. Subsequently, it
advances the current IMU ID to the next state. Any remaining
unused IMU messages are then purged from the buffer.

C. process model

The process model function aims to derive the camera
module’s pose dynamics from the latest IMU state update. It
takes arguments such as time, gyro (current angular velocity),
and acc(current linear acceleration). Subsequently, it computes
the error for each IMU state using the formula given below



The IMU state error can be calculated from the linearized
continuous dynamics using the equation:

From the MSCKF paper, we refer to the F and G matrices:

he

The matrix is then approximated to its 3rd order as follows:

D. predict new state

Upon acquiring the current system state, the process em-
ploys the fourth-order Runge-Kutta method to project the
state forward and anticipate its new configuration. The pre-
dict new state function accepts parameters such as the time
increment (d), gyroscope readings, and acceleration data for
the current state. Initially, the method calculates the normal-
ized error state of the angular velocity dataset. Subsequently,
it proceeds to generate the Ω matrix through a specific set of
steps, tailored to the requirements of the task. The Ω matrix
is written as:

We acquire the present orientation, velocity and orientation
from the IMU sever state function. With the current state and Ω
matrix, we can compute the angular velocity and acceleration
using the Runga-Kutta approximation method of 4th order
given below:

We then convert the estimated orientation to quaternions
after the approximation and update the velocity and position
back to the current state. This is then used to estimate the next
state in the sequence.

E. state augmentation

This function computes the state covariance matrix, which
aids in understanding and quantifying the uncertainty associ-
ated with the current state. Initially, we isolate the IMU and
camera state parameters relevant to the rotation from the IMU
to the camera and the translation vector from the camera to
the IMU. Following this, we integrate a new camera state into
the state server, leveraging the initial IMU and camera states.
The approximated Jocabian matrix is given as:

The state covariance matrix is resized and given as

F. add feature observations

This function determines the current IMU state ID and
assesses the number of features present. Following this, we



sequentially add each feature from the feature message to the
map server if it hasn’t already been included. Additionally,
we keep track of the count of tracked features. With each
state update, the map server is refreshed to ensure continuous
tracking of all features. The tracking rate is calculated as
the ratio of tracked features to the total number of available
features.

G. measurement update

A measurement model is employed for refining state es-
timations. A residual, labelled as r, demonstrates a linear
dependency on state errors, as indicated by the following
expression.

Here, H stands for the measurement Jacobian matrix, while
the noise term signifies a zero-mean, white, uncorrelated
state error. The estimated Kalman filter framework is applied.
Initially, we check if the current values of H and r are both
zero. Following this, we endeavour to simplify the Jacobian
matrix’s complexity using QR decomposition, aiming to re-
duce computational demands.

Here, Q1 and Q2 are unitary matrices with columns that
form bases for the range and null space of Hx., respectively.
This is an upper triangular matrix. Next, we calculate the
Kalman gain according to the equation:

K = PTH(THPTT
H +Rn)

−1 (1)

After calculating the Kalman gain, we can find the state error
using this equation

∆X = Krn (2)

The equation is updated by adjusting the IMU state using
this state error, then proceeds to update the camera states.
Finally, the state covariance undergoes an update, ensuring
that the covariance matrix is adjusted to maintain symmetry.

IV. RESULTS

The project utilizes data from the Machine Hall 01 easy
(MH 01 easy) subset of the EuRoC dataset. The trajectory
output depicted in Figure 1 corresponds well with the expected
results. Additionally, the code files include a video showcasing
the output. Below is the table that shows RMSE ATE (absolute
trajectory error).

RMSE Value
Rotation 1.449

Scale 1.051
Translation 0.081
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Fig. 1. Relative Translation Error Perception
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Fig. 2. Relative Translation Error
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Fig. 3. Relative Yaw Error
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Fig. 4. Rotation Error
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Fig. 5. Scale Error
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Fig. 6. Trajectory Top View
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Fig. 7. Translation Error

Fig. 8. Output Sample
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