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Abstract—In this project, we implement the Python translation
of the influential paper on Visual Inertial Odometry by Vijay
Kumar et al.

I. INTRODUCTION

We implement a select few functions from the paper and
incorporate these into the starter code provided. The functions
implemented are part of the Stereo Multi-State Constraint
Kalman Filter (S-MCKF). The seven functions implemented
are discussed below.

A. Initialize Gravity And Bias

The function first initializes and sums the IMU readings
of angular velocities and linear accelerations. The mean of
the angular velocities measured for the initial few readings is
taken as the bias of the gyroscope, and the norm of the linear
accelerations for the initial few readings is taken as gravity
after being converted into a quaternion.

B. Batch IMU Processing

This function takes the IMU messages in the buffer for each
specified time bound and converts the angular velocity and
linear acceleration data from each message into Eigen vectors.
These vectors are then passed on to the Process Model. This
process is repeated till the end of the time bound. In the end,
processed messages are removed from the bufer.

C. Process Model

The state of the IMU is defined by
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Here, the quaternion I
Gq

T represents the rotation from the
inertial frame to the body frame. The third and fifth terms
represent the velocity and position of the body frame in the
inertial frame. The second and fourth terms represent the
biases of the measured angular velocity and linear acceleration
from the IMU. The seventh and the eighth term represents the
relative transformation between the camera frame and the body
frame. The error in IMU state is used as using the state directly
could result in a few issues.
The dynamics of the estimated IMU state is given by,

where,

Ω(ω̂) =

(
− [ω̂×] ω
−ω⊤ 0

)
and ω and a are the IMU measurements for angular velocity
and acceleration respectively with biases removed.

The linearized continuous dynamics for the error IMU state
is given by

˙̃xI = Fx̃I +GnI (2)

where F and G are given by,

D. Predict New State

In order to deal with discrete time measurement from the
IMU, we apply a 4th order Runge-Kutta numerical integration
of the state to propagate the estimated IMU state. We first
calculate the norm of the orientation, then the orientation,



velocity and position are approximated using Runge-Kutta
method.

E. State Augmentation

This function calculates the state covariance matrix in order
to propagate the state’s uncertainty. We take the IMU and
camera state values, the rotation and the translation vector
from the camera to the IMU. The pose of the new camera
state can be computed from the latest IMU state as,

The augmented covariance matrix is given by,

where J is given by,

F. Add Feature Observations

This function is used to update the features from the feature
message into the map server.

G. Measurement Update

This function updates the state estimates. We calculate the
Kalman gain and state error by decomposing the Jacobian
matrix. Using these, IMU and camera states are updated.
Finally, the state covariance is updated, and the covariance
matrix is modified to be symmetric.

II. RESULTS
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